AI绘图:Stable Diffusion WEB UI 详细操作介绍:基础篇

接上一篇《AI绘图体验:Stable Diffusion本地化部署详细步骤》本地部署完了SD后,大家肯定想知道怎么用,接下来补一篇Stable Diffusion WEB UI 详细操作,如果大家还没有完成SD的部署,请参考上一篇文章进行本地化的部署。

基于使用最多的 文生图 模块来讲解最常用的一些操作

一、WEB UI 页面

你进入到 web ui 页面后可以看到下面这个页面(不同人的设置,可能会有颜色风格差异。整体布局可参考)。

其中:

  • 模型选择: 模型对于 SD 绘图来说非常重要,不同的模型类型、质量会很大程度的决定最终的出图效果(模型相关的课程会在后面细讲)

  • Prompt区: 如果你使用过 ChatGPT 你应该知道 Prompt 是什么。说的直白点就是你想让 SD 帮忙生成什么样的图,反向 Prompt 就是你不想让 SD 出生的图里有这些东西。后续课程也会详细的讲解如何更好的编写 Prompt

  • 功能栏: 包括了常见的 文生图、图生图、模型获取、模型训练等功能。不同的功能页面也不同,这一节课,我们先针对最长使用的 文生图 模块页面来讲解

  • 采样区: 采用什么样的绘画方式算法,以及“画多少笔” 来绘图。一定程度上决定出图的质量

  • 调参区: 设置分辨率、每次出图的批次、出图抽象性(和 prompt 关联性的程度)

  • 脚本区: 通过配置脚本可以提高效率;比如批量出图、多参数的出图效果比较(课程中会大量使用)

接下来会进一步的介绍每个模块的使用。

二、模型选择

直白点说,

模型就是“模型训练师”们通过大量的图片进行训练得到的具备某种风格的模型。

我们使用某个模型后,

后续在出图的整体方向就会更靠近这个模型的风格。

你安装好之后默认可以看到两个模型

  • anything : 二次元风格模型

  • Deliberate:真人风格模型

三、Prompt 区

如果你学习过如何更好的编写 ChatGPT 的 prompt,

你会发现 Prompt 的编写都会遵守一定的范式,

这样得出来的效果才可能更贴近我们的想法。

选择完模型之后,

我们就可以给予这个模型风格,

告诉 SD prompt 画出什么样的图。

比如:直接告诉 SD 画一个女孩

虽然能出来一个 女孩,

emmm... 但是这个质量吧,还是很差的,

实事上呢,

是我们的 prompt 写的太差劲了 导致的

如果我们完善一点 (丰富一些 prompt )

会发现效果质量立竿见影;而我们只是加入了一些通用的 prompt 提示语

正向的 prompt:说白就是要高画质、更多的细节

 (masterpiece:1,2), best quality, masterpiece,best detail face

向的 prompt:不要少胳膊断腿,要是一个正常的图

(((NSFW))), (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, (ugly:1.331), (duplicate:1.331), (morbid:1.21), (mutilated:1.21), (tranny:1.331), mutated hands, (poorly drawn hands:1.5), blurry, (bad anatomy:1.21), (bad proportions:1.331), extra limbs, (disfigured:1.331), (missing arms:1.331), (extra legs:1.331), (fused fingers:1.61051), (too many fingers:1.61051), (unclear eyes:1.331), lowers, bad hands, missing fingers, extra digit,bad hands, missing fingers, (((extra arms and legs))),

其中的一些细节,

比如 提示语的语法格式、公式、权重、模版和tag大全,我们会在 prompt 和 tag 课程中细讲

有个比较有意思的 反向 tag 叫 NSFW(no sutiable for work)

一般情况尽量把这个加入到反向词中,特别是工作场合。不然惊喜可能随时都会出现(各种18+)...

想想在工作的时候,你信誓旦旦给你的同事来一张漂亮的小姐姐,结果.....

如果你不太信的话,可以直接把 NSFW 放在正向里面试试...

四、采样区

采样区做的事就是,我们该用什么样的采样方式来画,画多少笔(多细致)

1.采样方式

由于采样方式的原理比较深奥,涉及到很多的算法,我直接给结论,

我更加推荐使用下面这三个:

  • Euler a

  • DDIM

  • DPM ++ 2M Karras

我们可以试试这三个不同采样方法的效果

整体的质量是非常好的,出图速度相对也会快很多

2.采样步数

采样步数相当于是作画的时候画多少笔。

同样的也是先给结论,建议在 20-40之间,出图效果会更好。并不是越高越好

来看看效果

会发现步数到了60其实也还好,

但同时需要考虑到性价比,步数越高也就意味着耗费的资源会越多,对机器的配置会更高。

所以一般我们的步数设置到 20-40之间就可以了。

好了,基础篇就到此结束了,大家各自摸索吧,想要超近路的同学,我们在学习下面部修复和调参。来我的下一篇博客吧。

《AI绘图:Stable Diffusion WEB UI 详细操作介绍:进阶篇》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/514483.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vue2+element-ui 实现OSS分片上传+取消上传

遇到问题:项目中需要上传500MB以上的视频。一开始使用上传组件el-upload,调用后台接口,但是出现了onprogress显示百分百后接口一直pending,过了很多秒后接口才通,如果遇到大文件的话,接口就会报超时。 解决…

【javaScript】DOM编程入门

一、什么是DOM编程 概念:DOM(Document Object Model)编程就是使用document对象的API完成对网页HTML文档进行动态修改,以实现网页数据和样式动态变化的编程 为什么要由DOM编程来动态修改呢?我们就得先理解网页的运行原理: 如上图&a…

机器学习每周挑战——信用卡申请用户数据分析

数据集的截图 # 字段 说明 # Ind_ID 客户ID # Gender 性别信息 # Car_owner 是否有车 # Propert_owner 是否有房产 # Children 子女数量 # Annual_income 年收入 # Type_Income 收入类型 # Education 教育程度 # Marital_status 婚姻状况 # Housing_type 居住…

C_C++数据的在内存中的分布

C/C内存分布 在编程世界中,C和C语言一直以其强大的性能和灵活性著称。然而,这种强大和灵活的背后,离不开对内存分布的深入理解和熟练掌握。本文将详细介绍C/C程序中的内存分布,包括栈、堆和全局变量的存储区域。下面是c/c中&…

如何在本地搭建集成大语言模型Llama 2的聊天机器人并实现无公网IP远程访问

文章目录 1. 拉取相关的Docker镜像2. 运行Ollama 镜像3. 运行Chatbot Ollama镜像4. 本地访问5. 群晖安装Cpolar6. 配置公网地址7. 公网访问8. 固定公网地址 随着ChatGPT 和open Sora 的热度剧增,大语言模型时代,开启了AI新篇章,大语言模型的应用非常广泛,包括聊天机…

x-cmd-pkg | broot 是基于 Rust 开发的一个终端文件管理器

简介 broot 是基于 Rust 开发的一个终端文件管理器,它设计用于帮助用户在终端中更轻松地管理文件和目录,使用树状视图探索文件层次结构、操作文件、启动操作以及定义您自己的快捷方式。 同时它还集成了 ls, tree, find, grep, du, fzf 等工具的常用功能…

Python爬虫之分布式爬虫

分布式爬虫 1.详情介绍 分布式爬虫是指将一个爬虫任务分解成多个子任务,在多个机器上同时执行,从而加快数据的抓取速度和提高系统的可靠性和容错性的技术。 传统的爬虫是在单台机器上运行,一次只能处理一个URL,而分布式爬虫通过将…

Android Glide配置AppGlideModule定制化线程池,Kotlin(1)

Android Glide配置AppGlideModule定制化线程池,Kotlin(1) plugins {id org.jetbrains.kotlin.kapt }implementation com.github.bumptech.glide:glide:4.16.0kapt com.github.bumptech.glide:compiler:4.16.0 import android.content.Context…

C之结构体初始化10种写法总结(九十)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…

开启 Keep-Alive 可能会导致http 请求偶发失败

大家好,我是蓝胖子,说起提高http的传输效率,很多人会开启http的Keep-Alive选项,这会http请求能够复用tcp连接,节省了握手的开销。但开启Keep-Alive真的没有问题吗?我们来细细分析下。 最大空闲时间造成请求…

跨境金融区块链服务平台

跨境金融服务是因企业及个人跨境经营、交易、投资、往来等活动而产生的资金使用、调拨、配置等需求,而提供的金融服务。近年来,随着我国经济的快速稳步增长和全球化经济一体化的不断深入发展,跨境金融业务增长迅速,监管也开始转化…

在ChatGPT中,能用DALL·E 3编辑图片啦!

4月3日,OpenAI开始向部分用户,提供在ChatGPT中的DALLE 3图片编辑功能。 DALLE 3是OpenAI在2023年9月20日发布的一款文生图模型,其生成的图片效果可以与Midjourney、leonardo、ideogram等顶级产品媲美,随后被融合到ChatGPT中增强其…

反截屏控制技术如何防止信息通过手机拍照泄漏?

反截屏控制技术为企业数据安全提供了重要的防护措施。通过以下几点,有效阻止了信息通过拍照等方式的泄漏: 反截屏控制开启,用户启动截屏操作时,允许非涉密内容截屏操作,但所有涉密内容窗口会自动隐藏,防止涉…

记录一次threejs内存泄露问题排查过程

问题描述: 一个有关地图编辑的使用threejs的这样的组件,在多次挂载销毁后,页面开始卡顿。 问题排查: 1. 首先在chrome dev tool中打开performance monitor面板,观察 JS head size、DOME Nodes、Js event listeners数…

AWVS 安装详细教程

一、软件介绍 Acunetix Web Vulnerability Scanner(简称AWVS)是一款知名的Web网络漏洞扫描工具,它通过网络爬虫测试你的网站安全,检测流行安全漏洞。AWVS官方网站是:http://www.acunetix.com/ 二、下载安装 官方下载地址:https…

【大数据存储】yolov3识虫实验

一、项目实践步骤 图 1 构建模型和完成训练的程序图 二、实验背景 2.1数据集介绍 AI识虫数据集结构如下: 提供了2183张图片,其中训练集1693张,验证集245,测试集245张。包含7种昆虫,分别是Boerner、Leconte、Linnaeus…

​如何使用ArcGIS Pro进行洪水淹没分析

洪水淹没分析是一种常见的水文地理信息系统应用,用于模拟和预测洪水事件中可能受到淹没影响的地区,这里为大家介绍一下ArcGIS Pro进行洪水淹没分析的方法,希望能对你有所帮助。 数据来源 教程所使用的数据是从水经微图中下载的DEM数据&…

搞学术研究好用免费的学术版ChatGPT网站-学术AI

https://chat.uaskgpt.com/mobile/?user_sn88&channelcsdn&sceneloginhttps://chat.uaskgpt.com/mobile/?user_sn88&channelcsdn&scenelogin 推荐一个非常适合中国本科硕士博士等学生老师使用的学术版ChatGPT, 对接了超大型学术模型&#xff0c…

linux------jekins构建cicd

🎈个人主页:靓仔很忙i 💻B 站主页:👉B站👈 🎉欢迎 👍点赞✍评论⭐收藏 🤗收录专栏:linux 🤝希望本文对您有所裨益,如有不足之处&#…

【动态规划】【背包问题】基础背包

【动态规划】【01背包问题】 解法 二维dp数组01背包解法 一维dp数组(滚动数组)01背包 ---------------🎈🎈题目链接🎈🎈------------------- 解法 二维dp数组01背包 😒: 我的代码实现> …