Rust所有权和Move关键字使用和含义讲解,以及Arc和Mutex使用

Rust 所有权规则

一个值只能被一个变量所拥有,这个变量被称为所有者。
一个值同一时刻只能有一个所有者,也就是说不能有两个变量拥有相同的值。所以对应变量赋值、参数传递、函数返回等行为,旧的所有者会把值的所有权转移给新的所有者,以便保证单一所有者的约束。
当所有者离开作用域,其拥有的值被丢弃,内存得到释放。
这三条规则很好理解,核心就是保证单一所有权。其中第二条规则讲的所有权转移是 Move 语义,Rust 从 C++ 那里学习和借鉴了这个概念。

第三条规则中的作用域(scope)指一个代码块(block),在 Rust 中,一对花括号括起来的代码区就是一个作用域。举个例子,如果一个变量被定义在 if {} 内,那么 if 语句结束,这个变量的作用域就结束了,其值会被丢弃;同样的,函数里定义的变量,在离开函数时会被丢弃。

所有权规则,解决了谁真正拥有数据的生杀大权问题,让堆上数据的多重引用不复存在,这是它最大的优势。 但是,它也有一个缺点,就是每次赋值、参数传递、函数返回等行为,都会导致旧的所有者把值的所有权转移给新的所有者,这会导致一些性能上的问题。

Move关键字

Rust 是一门以安全性著称的系统编程语言,它允许程序员高效地进行并发编程。在 Rust 中,线程是一种重要的并发原语,通过标准库提供的 std::thread 模块,我们可以轻松地创建和管理线程。而 Move 闭包是一种特殊的闭包,它可以在创建时传递外部变量的所有权,使得在多线程环境中传递数据更加灵活和高效。

Rust 中的线程

在 Rust 中,线程是一种独立的执行流,它允许程序在不同的执行路径上同时运行。Rust 的线程模型采用了“共享状态,可变状态”(Shared State, Mutable State)的方式,这意味着多个线程可以访问同一个数据,但需要通过锁(Lock)来保证数据的安全性。

创建线程:在 Rust 中,我们可以使用 std::thread::spawn 函数来创建一个新的线程。下面是一个简单的例子:

use std::thread;

fn main() {
    let handle = thread::spawn(|| {
        println!("Hello from the new thread!");
    });

    handle.join().unwrap();
}

在上述示例中,我们调用 thread::spawn 函数创建了一个新的线程,并在该线程中打印一条信息。注意,thread::spawn 函数接受一个闭包作为参数,闭包中的代码会在新线程中执行。

线程间通信
在多线程编程中,线程间通信是一个重要的问题。在 Rust 中,我们可以使用 std::sync 模块提供的同步原语来实现线程间的安全通信。常见的同步原语包括 Mutex(互斥锁)和 Arc(原子引用计数)等。

下面是一个使用 Mutex 实现线程安全计数的例子:

use std::sync::{Arc, Mutex};
use std::thread;

fn main() {
    let counter = Arc::new(Mutex::new(0));
    let mut handles = vec![];

    for _ in 0..10 {
        let counter = Arc::clone(&counter);
        let handle = thread::spawn(move || {
            let mut num = counter.lock().unwrap();
            *num += 1;
        });
        handles.push(handle);
    }

    for handle in handles {
        handle.join().unwrap();
    }

    println!("Result: {}", *counter.lock().unwrap());
}

在上述示例中,我们创建了一个 Mutex 来包装计数器变量 counter,以实现线程安全的计数。在每个线程中,我们通过 counter.lock().unwrap() 获取 Mutex 的锁,然后通过 *num += 1 修改计数器的值。在修改完成后,锁会自动释放。

Move 闭包

Rust 中的闭包有三种形式:Fn、FnMut 和 FnOnce。其中,FnOnce 是最特殊的一种,它可以消耗捕获的变量,并且只能被调用一次。这种特性使得 FnOnce 闭包可以在创建时携带外部变量的所有权,并在闭包内使用这些变量。

在线程中使用 Move 闭包:
在多线程编程中,有时我们希望在线程创建时将一些数据传递给新线程,并且希望新线程拥有这些数据的所有权,这时就可以使用 Move 闭包。

下面是一个使用 Move 闭包的例子:

use std::thread;

fn main() {
    let data = vec![1, 2, 3, 4, 5];

    let handle = thread::spawn(move || {
        for num in data {
            println!("Number: {}", num);
        }
    });

    handle.join().unwrap();
}

在上述示例中,我们创建了一个 data 向量,并在 thread::spawn 函数中使用 move 关键字将 data 向量的所有权转移给了新线程。这样,新线程就拥有了 data 向量的所有权,可以在闭包中访问和使用它。

需要注意的是,使用 Move 闭包时要特别小心数据的所有权转移。如果在闭包外部继续使用了数据,可能会导致编译错误或运行时错误: 

使用 Arc 和 Move 闭包

在某些情况下,我们希望在多个线程中共享数据,并且某些线程需要拥有数据的所有权。这时,可以结合使用 Arc 和 Move 闭包来实现。

下面是一个使用 Arc 和 Move 闭包的例子:

use std::sync::{Arc, Mutex};
use std::thread;

fn main() {
    let data = Arc::new(Mutex::new(vec![1, 2, 3, 4, 5]));

    let handles: Vec<_> = (0..5)
        .map(|i| {
            let data = Arc::clone(&data);
            thread::spawn(move || {
                let mut data = data.lock().unwrap();
                data[i] += 1;
            })
        })
        .collect();

    for handle in handles {
        handle.join().unwrap();
    }

    println!("Result: {:?}", *data.lock().unwrap());
}

在上述示例中,我们创建了一个 data 向量,并将它包装在 Arc 和 Mutex 中以实现线程安全共享。然后,我们使用 map 方法创建了5个线程,并在每个线程中修改 data 向量的一个元素。通过使用 Move 闭包和 Arc,每个线程都拥有了 data 向量的所有权,可以在闭包中修改它。

多线程与 Move 闭包的应用场景

多线程和 Move 闭包在 Rust 中有着广泛的应用场景,尤其是在并发处理和性能优化方面。以下是一些常见的应用场景:

并行计算:多线程可以同时执行独立的任务,提高计算速度和性能。
并发服务器:服务器需要同时处理多个客户端请求,多线程可以使服务器更高效地处理并发请求。
数据处理:在数据处理任务中,多线程可以同时处理不同的数据块,加速数据处理过程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/513633.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

标题:巨控GRM560:医药行业设备管理的预警的革新者

描述&#xff1a;在快速发展的医药行业中&#xff0c;设备的稳定性和安全性至关重要。巨控GRM560模块作为一种前沿的数据采集和故障提醒系统&#xff0c;已经成为该行业内不可或缺的一部分。本文将深入探讨GRM560模块的功能及其在医药行业中的应用。 正文&#xff1a; 在当今…

Leetcode刷题-数组(二分法、双指针法、窗口滑动)

数组 1、二分法 704. 二分查找 - 力扣&#xff08;LeetCode&#xff09; 需要注意区间的问题。首先在最外面的循环判断条件是left<right。那就说明我们区间规定的范围就是【left,right】 属于是左闭右闭&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&…

I2C总线与AT24C02

目录 I2C总线 I2C总线介绍 I2C电路规范 I2C时序结构 起始与终止 代码理解 发送字节 代码理解 接收字节 代码理解 数据应答 代码理解 I2C的数据据帧 发送数据帧 接收数据帧 发送接收数据帧 AT24C02芯片 AT24C02介绍 引脚及应用电路 内部结构图 AT24C02数据…

Android 高德地图

1.获取Key 进入高德开放平台控制台&#xff0c;创建一个新应用。在创建的应用上点击"添加key"按钮&#xff0c;在弹出的对话框中&#xff0c;依次输入key名称&#xff0c;选择服务平台为“Android平台”&#xff0c;输入发布版安全码 SHA1、以及 Package。 获取 S…

贵州省NPP净初级生产力数据/NDVI数据

数据福利是专门为关注小编博客及公众号的朋友定制的&#xff0c;未关注用户不享受免费共享服务&#xff0c;已经被列入黑名单的用户和单位不享受免费共享服务。参与本号发起的数据众筹&#xff0c;向本号捐赠过硬盘以及多次转发、评论的朋友优先享有免费共享服务。 净初级生产…

Vue3从入门到实战:路由的query和params参数

在Vue 3中&#xff0c;我们可以通过路由的查询参数来传递数据。这意味着我们可以在不同的页面之间传递一些信息&#xff0c;以便页面可以根据这些信息来显示不同的内容或执行不同的操作。 查询参数的使用方式类似于在URL中添加附加信息&#xff0c;以便页面之间可以根据这些信息…

基于springboot+vue实现的酒店客房管理系统

作者主页&#xff1a;Java码库 主营内容&#xff1a;SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app等设计与开发。 收藏点赞不迷路 关注作者有好处 文末获取源码 技术选型 【后端】&#xff1a;Java 【框架】&#xff1a;spring…

Redis高可用主从复制与哨兵模式

前言 在生产环境中&#xff0c;除了采用持久化方式实现 Redis 的高可用性&#xff0c;还可以采用主从复制、哨兵模式和 Cluster 集群的方法确保数据的持久性和可靠性。 目录 一、主从复制 1. 概述 2. 作用 3. 主从复制流程 4. 部署 4.1 安装 redis 4.2 编辑 master 节…

Xxxxxx

数据库 1&#xff0c;B树与B树区别 1&#xff0c;B树每个节点存ID与其他数据字段&#xff0c;B非叶子结点&#xff0c;只存ID&#xff0c;叶子结点存完整数据 好处&#xff1a;每个层级B树&#xff0c;可以存储更多的额数据&#xff0c;层级更少&#xff0c;更扁平&#xff…

代码块的理解

如果成员变量想要初始化的值不是一个硬编码的常量值&#xff0c;而是需要通过复杂的计算或读取文件、或读取运行环境信息等方式才能获取的一些值&#xff0c;该怎么办呢&#xff1f;此时&#xff0c;可以考虑代码块&#xff08;或初始化块&#xff09;。 代码块(或初始化块)的作…

【Linux】IO多路转接

文章目录 一、selectselect函数select基本工作流程select的优缺点select的适用场景 二、pollpoll函数poll的优缺点 三、epollepoll相关系统调用epoll工作原理epoll的优点epoll工作方式对比LT和ET 一、select select是系统提供的一个多路转接接口。 select系统调用可以让我们的…

(echarts)vue中循环生成多个相同的echarts图表,但数据动态、第一次渲染失败问题

(echarts)vue中循环生成多个相同的echarts图表&#xff0c;但数据动态 效果&#xff1a; 代码&#xff1a; <!-- 动态图表 --> <el-row :gutter"20"><el-col v-for"(item,index) in echartsList" :key"index" :span"10&quo…

wordpress课程项目主题电脑版+手机版自适应

这款主题适合做资源、课程、素材等&#xff0c;演示站&#xff1a;点击查看

openwrt开发包含路由器基本功能的web问题记录

1.这里的扫描怎么实现的先找一些luci代码&#xff0c;在openwrt21版本后&#xff0c;luci用js替换了lua写后台&#xff0c;先找一些代码路径 在openrwt15这部分代码是在这个目录下 feeds/luci/modules/luci-mod-admin-full/luasrc/view/admin_network/wifi_join.htm 里面包含…

javaWeb旅游网站设计

一、概述 1.1 项目研究背景 社会经济的发展和提高潜移默化的影响了人们对精神消费的日益看中与提高&#xff0c;所以越来越多的人们开始选择更健康有趣的生活活动&#xff0c;随之而来的旅游便成了人们消费的必选。随着旅客需求的日趋丰富和个性化&#xff0c;这势必将推动我…

理解main方法的语法

由于JVM需要调用类的main()方法&#xff0c;所以该方法的访问权限必须是public&#xff0c;又因为JVM在执行main()方法时不必创建对象&#xff0c;所以该方法必须是static的&#xff0c;该方法接收一个String类型的数组参数&#xff0c;该数组中保存执行Java命令时传递给所运行…

【零基础C语言】编译和链接

1.翻译环境和运行环境 翻译环境&#xff1a;将源代码转化为可执行的机器指令 运行环境&#xff1a;用于执行机器指令 1.1 翻译环境 翻译环境由编译和链接两大过程构建&#xff0c;编译又可以分为三大过程&#xff1a; 【1】预处理(预编译) 【2】编译 【3】汇编 不同的.c文件经…

计算机网络_工具

从你的电脑到指定ip网站&#xff0c;用时3ms ttl TTL Time To Live 数据包存活时间 指一个数据包在经过一个路由器时&#xff0c;可传递的最长距离&#xff08;跃点数&#xff09;。每当数据包经过一个路由器时&#xff0c;其存活次数就会被减一 256 - 249 7&…

什么!Intel/AMD/Apple Silicon也能本地部署的Llama工具来了

主流的LLM都需要通过CUDA才能高效的运行在本地&#xff0c;但是随着Github上出现了Llama.cpp这个神器&#xff0c;一切都改变了。它通过AVX指令和MPI来实现CPU上并行计算&#xff0c;从而在本地计算机高效地运行各种主流的类Llama模型。同时它也支持metal&#xff0c;使得Apple…

Mybatis的SQL高级查询与各符号用法

test语句里面的logparam是Mapper层传入的参数&#xff0c;读取logparam的属性不用再用#{}符号表示。 如果需要计算的式子很长&#xff0c;那么可用${}表示里面的式子是计算式&#xff0c;需要进行计算操作。同样不用通过#{logparam.Page}来读取logparam的Page属性的值&#xff…