山穷水尽,柳暗花明
—— 24.4.3
环形链表
给你一个链表的头节点
head
,判断链表中是否有环。如果链表中有某个节点,可以通过连续跟踪
next
指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数pos
来表示链表尾连接到链表中的位置(索引从 0 开始)。注意:pos
不作为参数进行传递 。仅仅是为了标识链表的实际情况。如果链表中存在环 ,则返回
true
。 否则,返回false
。示例 1:
输入:head = [3,2,0,-4], pos = 1 输出:true 解释:链表中有一个环,其尾部连接到第二个节点。示例 2:
输入:head = [1,2], pos = 0 输出:true 解释:链表中有一个环,其尾部连接到第一个节点。示例 3:
输入:head = [1], pos = -1 输出:false 解释:链表中没有环。
思路与算法
本方法需要读者对「Floyd 判圈算法」(又称龟兔赛跑算法)有所了解。
假想「乌龟」和「兔子」在链表上移动,「兔子」跑得快,「乌龟」跑得慢。当「乌龟」和「兔子」从链表上的同一个节点开始移动时,如果该链表中没有环,那么「兔子」将一直处于「乌龟」的前方;如果该链表中有环,那么「兔子」会先于「乌龟」进入环,并且一直在环内移动。等到「乌龟」进入环时,由于「兔子」的速度快,它一定会在某个时刻与乌龟相遇,即套了「乌龟」若干圈。
我们可以根据上述思路来解决本题。具体地,我们定义两个指针,一快一慢。慢指针每次只移动一步,而快指针每次移动两步。初始时,慢指针在位置 head,而快指针在位置 head.next。这样一来,如果在移动的过程中,快指针反过来追上慢指针,就说明该链表为环形链表。否则快指针将到达链表尾部,该链表不为环形链表。
为什么我们要规定初始时慢指针在位置 head,快指针在位置 head.next,而不是两个指针都在位置 head(即与「乌龟」和「兔子」中的叙述相同)?
观察下面的代码,我们使用的是 while 循环,循环条件先于循环体。由于循环条件一定是判断快慢指针是否重合,如果我们将两个指针初始都置于 head,那么 while 循环就不会执行。因此,我们可以假想一个在 head 之前的虚拟节点,慢指针从虚拟节点移动一步到达 head,快指针从虚拟节点移动两步到达 head.next,这样我们就可以使用 while 循环了。
public class Solution {
public boolean hasCycle(ListNode head) {
if (head == null || head.next == null) { // 判断指针指向的下一个节点是否为空
return false;
}
ListNode slow = head; // 较慢的指针一次走一个,从头节点出发
ListNode fast = head.next; // 较快的指针一次走两个,从第二个节点出发
while (slow != fast) { // 循环遍历,看两指针是否重合,以此判断是否链表中存在环
if (fast == null || fast.next == null) {
return false;
}
slow = slow.next;
fast = fast.next.next;
}
return true;
}
}
复杂度分析
时间复杂度:O(N),其中 N 是链表中的节点数。
当链表中不存在环时,快指针将先于慢指针到达链表尾部,链表中每个节点至多被访问两次。
当链表中存在环时,每一轮移动后,快慢指针的距离将减小一。而初始距离为环的长度,因此至多移动 N 轮。
空间复杂度:O(1)。我们只使用了两个指针的额外空间。