使用阿里云试用Elasticsearch学习:1.1 基础入门——入门实践

阿里云试用一个月:https://help.aliyun.com/search/?k=elastic&scene=all&page=1
官网试用十五天:https://www.elastic.co/cn/cloud/cloud-trial-overview
Elasticsearch中文文档:https://www.elastic.co/guide/cn/elasticsearch/guide/current/_document_oriented.html

控制台修改配置

自动创建索引打开
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/aedabe609e224916b3b393be3596af61.png在这里插入图片描述
访问白名单打开
在这里插入图片描述

创建一个雇员目录

为了让大家对 Elasticsearch 能实现什么及其上手难易程度有一个基本印象,让我们从一个简单的教程开始并介绍索引、搜索及聚合等基础概念。我们将一并介绍一些新的技术术语,即使无法立即全部理解它们也无妨,因为在本书后续内容中,我们将继续深入介绍这里提到的所有概念。

创建一个雇员目录
我们受雇于 Megacorp 公司,作为 HR 部门新的 “热爱无人机” (“We love our drones!”)激励项目的一部分,我们的任务是为此创建一个员工目录。该目录应当能培养员工认同感及支持实时、高效、动态协作,因此有一些业务需求:

  • 支持包含多值标签、数值、以及全文本的数据
  • 检索任一员工的完整信息
  • 允许结构化搜索,比如查询 30 岁以上的员工
  • 允许简单的全文搜索以及较复杂的短语搜索
  • 支持在匹配文档内容中高亮显示搜索片段
  • 支持基于数据创建和管理分析仪表盘

索引员工文档

第一个业务需求是存储员工数据。 这将会以 员工文档 的形式存储:一个文档代表一个员工。存储数据到 Elasticsearch 的行为叫做 索引 ,但在索引一个文档之前,需要确定将文档存储在哪里。
一个 Elasticsearch 集群可以 包含多个 索引 ,相应的每个索引可以包含多个 类型 。 这些不同的类型存储着多个 文档 ,每个文档又有 多个 属性 。

对于员工目录,我们将做如下操作:

  • 每个员工索引一个文档,文档包含该员工的所有信息。
  • 每个文档都将是 employee 类型 。
  • 该类型位于 索引 megacorp 内。
  • 该索引保存在我们的 Elasticsearch 集群中。
# 这种指定employee类型的已经不支持了
PUT /megacorp/employee/1
{
    "first_name" : "John",
    "last_name" :  "Smith",
    "age" :        25,
    "about" :      "I love to go rock climbing",
    "interests": [ "sports", "music" ]
}

从Elasticsearch 7.x版本开始,推荐不再使用自定义类型,比如employee。在较新的Elasticsearch版本中,索引中只有文档,不再有针对文档类型的区分。因此,在创建索引时,不需要指定文档类型,直接指定文档ID即可。

PUT /megacorp/_doc/1
{
    "first_name" : "John",
    "last_name" :  "Smith",
    "age" :        25,
    "about" :      "I love to go rock climbing",
    "interests": [ "sports", "music" ]
}

注意,路径 /megacorp/_doc/1 包含了三部分的信息:

  • megacorp —— 索引名称
  • _doc —— 默认类型名称
  • 1 —— 特定雇员的ID
  • 请求体 —— JSON 文档 —— 包含了这位员工的所有详细信息,他的名字叫 John Smith ,今年 25 岁,喜欢攀岩。

很简单!无需进行执行管理任务,如创建一个索引或指定每个属性的数据类型之类的,可以直接只索引一个文档。Elasticsearch 默认地完成其他一切,因此所有必需的管理任务都在后台使用默认设置完成。
进行下一步前,让我们增加更多的员工信息到目录中:

PUT /megacorp/_doc/2
{
    "first_name" :  "Jane",
    "last_name" :   "Smith",
    "age" :         32,
    "about" :       "I like to collect rock albums",
    "interests":  [ "music" ]
}
PUT /megacorp/_doc/3
{
    "first_name" :  "Douglas",
    "last_name" :   "Fir",
    "age" :         35,
    "about":        "I like to build cabinets",
    "interests":  [ "forestry" ]
}

检索文档

目前我们已经在 Elasticsearch 中存储了一些数据, 接下来就能专注于实现应用的业务需求了。第一个需求是可以检索到单个雇员的数据。
这在 Elasticsearch 中很简单。简单地执行 一个 HTTP GET 请求并指定文档的地址——索引库、类型和ID。 使用这三个信息可以返回原始的 JSON 文档:

GET /megacorp/_doc/1

返回结果包含了文档的一些元数据,以及 _source 属性,内容是 John Smith 雇员的原始 JSON 文档:

{
  "_index": "megacorp",
  "_id": "1",
  "_version": 1,
  "_seq_no": 2,
  "_primary_term": 1,
  "found": true,
  "_source": {
    "first_name": "John",
    "last_name": "Smith",
    "age": 25,
    "about": "I love to go rock climbing",
    "interests": [
      "sports",
      "music"
    ]
  }
}
  • _index: 显示了该文档所属的索引名称,这里是megacorp。
  • _id: 显示了文档的ID,这里是1。
  • _version: 显示了文档的版本号,每次文档更新都会增加这个版本号。
  • _seq_no: 显示了文档在索引中的序列号,用于处理并发操作。
  • _primary_term: 显示了文档在索引中的主要分片的代数,用于处理并发操作。
  • found: 显示了文档是否被找到,这里是true表示找到了。
  • _source: 包含了实际的文档数据,包括first_name、last_name、age、about和interests等字段,这些字段就是您插入的文档数据。

将 HTTP 命令由 PUT 改为 GET 可以用来检索文档,同样的,可以使用 DELETE 命令来删除文档,以及使用 HEAD 指令来检查文档是否存在。如果想更新已存在的文档,只需再次 PUT

轻量搜索

一个 GET 是相当简单的,可以直接得到指定的文档。 现在尝试点儿稍微高级的功能,比如一个简单的搜索!
第一个尝试的几乎是最简单的搜索了。我们使用下列请求来搜索所有雇员:

GET megacorp/_search

可以看到,我们仍然使用索引库 megacorp ,但与指定一个文档 ID 不同,这次使用 _search 。返回结果包括了所有三个文档,放在数组 hits 中。一个搜索默认返回十条结果。

{
  "took": 1,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": {
      "value": 3,
      "relation": "eq"
    },
    "max_score": 1,
    "hits": [
      {
        "_index": "megacorp",
        "_id": "1",
        "_score": 1,
        "_source": {
          "first_name": "John",
          "last_name": "Smith",
          "age": 25,
          "about": "I love to go rock climbing",
          "interests": [
            "sports",
            "music"
          ]
        }
      },......
    ]
  }
}
  • took: 表示查询所花费的时间,这里是1毫秒。
  • timed_out: 指示查询是否超时,这里是false表示未超时。
  • _shards: 提供有关查询执行期间涉及的分片数量和状态的信息。
    • total: 总分片数。
    • successful: 成功执行查询的分片数。
    • skipped: 跳过的分片数。
    • failed: 失败的分片数。
  • hits: 包含了与查询匹配的文档的信息。
    • total: 符合查询条件的总文档数,value是具体的数量,relation表示关系,这里是"eq"(等于)表示确切匹配。
    • max_score: 匹配文档中最高的得分,通常为1。
    • hits: 匹配的文档数组,每个文档包含了以下信息:
      • _index: 文档所属的索引名称。
      • _id: 文档的ID。
      • _score: 文档的匹配得分。
      • _source: 实际的文档数据,包含了您插入的文档内容。

接下来,尝试下搜索姓氏为 Smith 的雇员。为此,我们将使用一个 高亮 搜索,很容易通过命令行完成。这个方法一般涉及到一个 查询字符串 (query-string) 搜索,因为我们通过一个URL参数来传递查询信息给搜索接口:

GET megacorp/_search?q=last_name:Smith

使用查询表达式搜索

Query-string 搜索通过命令非常方便地进行临时性的即席搜索 ,但它有自身的局限性(参见 轻量 搜索 )。Elasticsearch 提供一个丰富灵活的查询语言叫做 查询表达式 , 它支持构建更加复杂和健壮的查询。
领域特定语言 (DSL), 使用 JSON 构造了一个请求。我们可以像这样重写之前的查询所有名为 Smith 的搜索 :

GET megacorp/_search
{
    "query" : {
        "match" : {
            "last_name" : "Smith"
        }
    }
}

返回结果与之前的查询一样,但还是可以看到有一些变化。其中之一是,不再使用 query-string 参数,而是一个请求体替代。这个请求使用 JSON 构造,并使用了一个 match 查询(属于查询类型之一,后面将继续介绍)。

更复杂的搜索

现在尝试下更复杂的搜索。 同样搜索姓氏为 Smith 的员工,但这次我们只需要年龄大于 30 的。查询需要稍作调整,使用过滤器 filter ,它支持高效地执行一个结构化查询。

GET megacorp/_search
{
    "query" : {
        "bool": {
            "must": {
                "match" : {
                    "last_name" : "smith"
                }
            },
            "filter": {
                "range" : {
                    "age" : { "gt" : 30 } 
                }
            }
        }
    }
}

must 这部分与我们之前使用的 match 查询 一样。
filter 这部分是一个 range 过滤器 , 它能找到年龄大于 30 的文档,其中 gt 表示_大于_(great than)。

目前无需太多担心语法问题,后续会更详细地介绍。只需明确我们添加了一个 过滤器 用于执行一个范围查询,并复用之前的 match 查询。现在结果只返回了一名员工,叫 Jane Smith,32 岁。

全文搜索

截止目前的搜索相对都很简单:单个姓名,通过年龄过滤。现在尝试下稍微高级点儿的全文搜索——一项 传统数据库确实很难搞定的任务。
搜索下所有喜欢攀岩(rock climbing)的员工:

GET megacorp/_search
{
    "query" : {
        "match" : {
            "about" : "rock climbing"
        }
    }
}

显然我们依旧使用之前的 match 查询在about 属性上搜索 “rock climbing” 。得到两个匹配的文档:

"hits": [
      {
        "_index": "megacorp",
        "_id": "1",
        "_score": 1.4167401,
        "_source": {
          "first_name": "John",
          "last_name": "Smith",
          "age": 25,
          "about": "I love to go rock climbing",
          "interests": [
            "sports",
            "music"
          ]
        }
      },
      {
        "_index": "megacorp",
        "_id": "2",
        "_score": 0.4589591,
        "_source": {
          "first_name": "Jane",
          "last_name": "Smith",
          "age": 32,
          "about": "I like to collect rock albums",
          "interests": [
            "music"
          ]
        }
      }
    ]

_score 为相关性得分
Elasticsearch 默认按照相关性得分排序,即每个文档跟查询的匹配程度。第一个最高得分的结果很明显:John Smith 的 about 属性清楚地写着 “rock climbing” 。

但为什么 Jane Smith 也作为结果返回了呢?原因是她的 about 属性里提到了 “rock” 。因为只有 “rock” 而没有 “climbing” ,所以她的相关性得分低于 John 的。

这是一个很好的案例,阐明了 Elasticsearch 如何 在 全文属性上搜索并返回相关性最强的结果。Elasticsearch中的 相关性 概念非常重要,也是完全区别于传统关系型数据库的一个概念,数据库中的一条记录要么匹配要么不匹配。

短语搜索

找出一个属性中的独立单词是没有问题的,但有时候想要精确匹配一系列单词或者_短语_ 。 比如, 我们想执行这样一个查询,仅匹配同时包含 “rock” 和 “climbing” ,并且 二者以短语 “rock climbing” 的形式紧挨着的雇员记录。

为此对 match 查询稍作调整,使用一个叫做 match_phrase 的查询:

"_source": {
   "first_name": "John",
   "last_name": "Smith",
   "age": 25,
   "about": "I love to go rock climbing",
   "interests": [
     "sports",
     "music"
   ]
 }

高亮搜索

许多应用都倾向于在每个搜索结果中 高亮 部分文本片段,以便让用户知道为何该文档符合查询条件。在 Elasticsearch 中检索出高亮片段也很容易。
再次执行前面的查询,并增加一个新的 highlight 参数:

GET megacorp/_search
{
    "query" : {
        "match_phrase" : {
            "about" : "rock climbing"
        }
    },
    "highlight": {
        "fields" : {
            "about" : {}
        }
    }
}

当执行该查询时,返回结果与之前一样,与此同时结果中还多了一个叫做 highlight 的部分。这个部分包含了 about 属性匹配的文本片段,并以 HTML 标签 <em></em> 封装:

"hits": [
      {
        "_index": "megacorp",
        "_id": "1",
        "_score": 1.4167401,
        "_source": {
          "first_name": "John",
          "last_name": "Smith",
          "age": 25,
          "about": "I love to go rock climbing",
          "interests": [
            "sports",
            "music"
          ]
        },
        "highlight": {
          "about": [
            "I love to go <em>rock</em> <em>climbing</em>"
          ]
        }
      }
    ]

分析

终于到了最后一个业务需求:支持管理者对员工目录做分析。 Elasticsearch 有一个功能叫聚合(aggregations),允许我们基于数据生成一些精细的分析结果。聚合与 SQL 中的 GROUP BY 类似但更强大。

举个例子,挖掘出员工中最受欢迎的兴趣爱好:

如果您的目标是对 interests 字段进行聚合操作(aggregation),那么您需要确保该字段是可以被聚合的类型。在 Elasticsearch 中,文本类型的字段默认是无法被聚合的,因为聚合操作通常需要使用字段数据(fielddata)来计算聚合结果,而文本类型的字段默认是禁用字段数据的。

对于您的情况,interests 是一个包含多个兴趣爱好的列表,您想要对这些兴趣爱好进行聚合操作。为了实现这一目的,您可以将 interests 字段定义为 keyword 类型的多值字段,并启用字段数据。这样可以允许 Elasticsearch 对该字段进行聚合操作。

GET megacorp/_search
{
  "aggs": {
    "all_interests": {
      "terms": { "field": "interests.keyword" }
    }
  }
}

暂时忽略掉语法,直接看看结果:

......
"aggregations": {
    "all_interests": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "music",
          "doc_count": 2
        },
        {
          "key": "forestry",
          "doc_count": 1
        },
        {
          "key": "sports",
          "doc_count": 1
        }
      ]
    }
  }

可以看到,两位员工对音乐感兴趣,一位对林业感兴趣,一位对运动感兴趣。这些聚合的结果数据并非预先统计,而是根据匹配当前查询的文档即时生成的。如果想知道叫 Smith 的员工中最受欢迎的兴趣爱好,可以直接构造一个组合查询:

GET megacorp/_search
{
  "query": {
    "match": {
      "last_name": "smith"
    }
  },
  "aggs": {
    "all_interests": {
      "terms": {
        "field": "interests.keyword"
      }
    }
  }
}

all_interests 聚合已经变为只包含匹配查询的文档:

{......
  "hits":{......},
  "aggregations": {
    "all_interests": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "music",
          "doc_count": 2
        },
        {
          "key": "sports",
          "doc_count": 1
        }
      ]
    }
  }
}

聚合还支持分级汇总 。比如,查询特定兴趣爱好员工的平均年龄:

GET megacorp/_search
{
    "aggs" : {
        "all_interests" : {
            "terms" : { "field" : "interests.keyword" },
            "aggs" : {
                "avg_age" : {
                    "avg" : { "field" : "age" }
                }
            }
        }
    }
}

得到的聚合结果有点儿复杂,但理解起来还是很简单的:

{......
  "aggregations": {
    "all_interests": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "music",
          "doc_count": 2,
          "avg_age": {
            "value": 28.5
          }
        },
        {
          "key": "forestry",
          "doc_count": 1,
          "avg_age": {
            "value": 35
          }
        },
        {
          "key": "sports",
          "doc_count": 1,
          "avg_age": {
            "value": 25
          }
        }
      ]
    }
  }
}

输出基本是第一次聚合的加强版。依然有一个兴趣及数量的列表,只不过每个兴趣都有了一个附加的 avg_age 属性,代表有这个兴趣爱好的所有员工的平均年龄。
即使现在不太理解这些语法也没有关系,依然很容易了解到复杂聚合及分组通过 Elasticsearch 特性实现得很完美,能够提取的数据类型也没有任何限制。

教程结语

欣喜的是,这是一个关于 Elasticsearch 基础描述的教程,且仅仅是浅尝辄止,更多诸如 suggestions、geolocation、percolation、fuzzy 与 partial matching 等特性均被省略,以便保持教程的简洁。但它确实突显了开始构建高级搜索功能多么容易。不需要配置——只需要添加数据并开始搜索!

很可能语法会让你在某些地方有所困惑,并且对各个方面如何微调也有一些问题。没关系!本书后续内容将针对每个问题详细解释,让你全方位地理解 Elasticsearch 的工作原理。

分布式特性

在本章开头,我们提到过 Elasticsearch 可以横向扩展至数百(甚至数千)的服务器节点,同时可以处理PB级数据。我们的教程给出了一些使用 Elasticsearch 的示例,但并不涉及任何内部机制。Elasticsearch 天生就是分布式的,并且在设计时屏蔽了分布式的复杂性。

Elasticsearch 在分布式方面几乎是透明的。教程中并不要求了解分布式系统、分片、集群发现或其他的各种分布式概念。可以使用笔记本上的单节点轻松地运行教程里的程序,但如果你想要在 100 个节点的集群上运行程序,一切依然顺畅。

Elasticsearch 尽可能地屏蔽了分布式系统的复杂性。这里列举了一些在后台自动执行的操作:

  • 分配文档到不同的容器 或 分片 中,文档可以储存在一个或多个节点中
  • 按集群节点来均衡分配这些分片,从而对索引和搜索过程进行负载均衡
  • 复制每个分片以支持数据冗余,从而防止硬件故障导致的数据丢失
  • 将集群中任一节点的请求路由到存有相关数据的节点
  • 集群扩容时无缝整合新节点,重新分配分片以便从离群节点恢复

后续步骤

现在大家对于通过 Elasticsearch 能够实现什么样的功能、以及上手的难易程度应该已经有了初步概念。Elasticsearch 力图通过最少的知识和配置做到开箱即用。学习 Elasticsearch 的最好方式是投入实践:尽情开始索引和搜索吧!

然而,对于 Elasticsearch 知道得越多,就越有生产效率。告诉 Elasticsearch 越多的领域知识,就越容易进行结果调优。

本书的后续内容将帮助你从新手成长为专家,每个章节不仅阐述必要的基础知识,而且包含专家建议。如果刚刚上手,这些建议可能无法立竿见影;但 Elasticsearch 有着合理的默认设置,在无需干预的情况下通常都能工作得很好。当你开始追求毫秒级的性能提升时,随时可以重温这些章节。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/511520.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

剑指Offer题目笔记24(集合的组合、排序)

面试题79&#xff1a; 问题&#xff1a; ​ 输入一个不含重复数字的数据集合&#xff0c;找出它的所有子集。 解决方案&#xff1a; ​ 使用回溯法。子集就是从一个集合中选出若干元素。如果集合中包含n个元素&#xff0c;那么生成子集可以分为n步&#xff0c;每一步从集合中…

数据可视化:智慧农业发展的催化剂

数据可视化在智慧农业中发挥着不可替代的作用。随着科技的不断进步&#xff0c;农业领域也在不断探索创新&#xff0c;以提高生产效率、优化资源利用&#xff0c;从而实现可持续发展。而数据可视化技术的应用&#xff0c;则成为了实现智慧农业目标的重要途径。下面我就从可视化…

ABAP OOALV标题设置

ABAP OOALV标题设置 OOALV默认标题是SAP&#xff0c;需要我们自己创建GUI 标题 创建GUI 标题&#xff0c;写好要展示的描述 添加截图中的代码即可。 下面的ALV 报表标题修改的位置在以下代码区域。 这时候通过查询layout&#xff08;wa_layout TYPE lvc_s_layo&#xff0…

mini2440移植lvgl(v8.2)

目录 概述 1 下载源码 1.1 登录LVGL git地址 1.2 LVGL linux平台上的库文件介绍 1.3 下载代码 1.3.1 下载lvgl 1.3.2 下载lv_drivers 1.3.3 下载lv_port_linux_frame_buffer 2 配置编译环境 2.1 创建工程目录 2.2 完善工程目录下的文件 2.2.1 构建工程文件 2.2.2 匹…

Oracle常用sql命令(新手)

1、备份单张表 创建复制表结构 create table employeesbak as select * from cims.employees 如果只复制表结构&#xff0c;只需要在结尾加上 where 10 插入数据 insert into employeesbak select * from cims.employees 删除一条数据 delete from…

水泥设备如何实现物联网远程监控?

水泥设备如何实现物联网远程监控&#xff1f; 在当今的工业4.0时代&#xff0c;水泥行业正在经历一场深度的技术革新&#xff0c;其中构建智慧工厂并采用物联网远程监控解决方案成为了提升生产效率、保障产品质量、实现节能减排的关键路径。该方案通过集成先进的信息技术、物联…

list使用与模拟实现

目录 list使用 reverse sort unique splice list模拟实现 类与成员函数声明 节点类型的定义 非const迭代器的实现 list成员函数 构造函数 尾插 头插 头删 尾删 任意位置插入 任意位置删除 清空数据 析构函数 拷贝构造函数 赋值重载函数 const迭代器的设计 …

【PostgreSQL】用pgAdmin轻松管理PostgreSQL

pgAdmin 是一个功能强大的开源Web界面工具&#xff0c;专为管理和维护PostgreSQL数据库而设计。它提供了一个直观的图形界面&#xff0c;使得用户能够轻松地执行复杂的数据库操作&#xff0c;如查询、更新、导入/导出数据以及管理数据库对象等。pgAdmin 支持几乎所有的PostgreS…

EasyExcel 模板导出excel、合并单元格及单元格样式设置。 Freemarker导出word 合并单元格

xls文件&#xff1a; 后端代码&#xff1a; InputStream filePath this.getClass().getClassLoader().getResourceAsStream(templateFile);// 根据模板文件生成目标文件ExcelWriter excelWriter EasyExcel.write(orgInfo.getFilename()).excelType(ExcelTypeEnum.XLS).withTe…

redis 数据库的安装及使用方法

目录 一 关系数据库与非关系型数据库 &#xff08;一&#xff09;关系型数据库 1&#xff0c;关系型数据库是什么 2&#xff0c;主流的关系型数据库有哪些 3&#xff0c;关系型数据库注意事项 &#xff08;二&#xff09;非关系型数据库 1&#xff0c;非关系型数据库是…

37.HarmonyOS鸿蒙系统 App(ArkUI) 创建第一个应用程序hello world

HarmonyOS App(ArkUI) 创建第一个应用程序helloworld 线性布局 1.鸿蒙应用程序开发app_hap开发环境搭建 3.DevEco Studio安装鸿蒙手机app本地模拟器 打开DevEco Studio,点击文件-》新建 双击打开index.ets 复制如下代码&#xff1a; import FaultLogger from ohos.faultL…

鸿蒙OS元服务开发说明:【WebGL网页图形库开发接口】

一、场景介绍 WebGL主要帮助开发者在前端开发中完成图形图像的相关处理&#xff0c;比如绘制彩色图形等。目前该功能仅支持使用兼容JS的类Web开发范式开发。 二、接口说明 表1 WebGL主要接口列表 鸿蒙OS开发更多内容↓点击HarmonyOS与OpenHarmony技术鸿蒙技术文档开发知识更…

elment UI el-date-picker 月份组件选定后提交后台页面显示正常,提交后台字段变成时区格式

需求&#xff1a;要实现一个日期的月份选择<el-date-picker :typeformData.dateType :value-formatdateFormat v-modelformData.leaveFactoryDateplaceholder选择月份></el-date-picker>错误示例&#xff1a;将日期显示类型(type)dateType或将日期绑定值的格式(val…

Java SpringBoot中优雅地判断一个对象是否为空

在Java中&#xff0c;可以使用以下方法优雅地判断一个对象是否为空&#xff1a; 使用Objects.isNull()方法判断对象是否为空&#xff1a; import java.util.Objects;if (Objects.isNull(obj)) {// obj为空的处理逻辑 }使用Optional类优雅地处理可能为空的对象&#xff1a; impo…

为何网易游戏会选择引入OceanBase数据库

本文作者&#xff1a;田维繁&#xff0c;网易游戏关系型数据库小组负责人 作为中国游戏开发领域的佼佼者&#xff0c;网易游戏始终站在网络游戏自主研发的前沿。其产品及周边产品线丰富多样&#xff0c;因此&#xff0c;为满足各种业务场景的需求&#xff0c;需要多种不同的数据…

XRDP登录ubuntu桌面闪退问题

修改 /etc/xrdp/startwm.sh unset DBUS_SESSION_BUS_ADDRESS unset XDG_RUNTIME_DIR . $HOME/.profile

ensp华为AC+AP上线配置

AR1配置&#xff1a; <Huawei>system-view # 进入系统视图<Huawei>sysname R1 # 设备重命名[R1]dhcp enable # 开启DHCP功能[R1]interface GigabitEthernet0/0/0 # 进入接口 [R1-GigabitEthernet0/0/0]ip address 192.168.0.1 23 # 配置接口地址 [R1-GigabitE…

教育信创 | 云轴科技ZStack联合飞腾发布全场景教育信创白皮书

随着数字化时代的到来&#xff0c;教育行业正面临着前所未有的挑战与机遇。为了推动教育行业的数字化转型和信创人才培养&#xff0c;云轴科技ZStack联合飞腾于3月28日正式发布了《教育行业数字化自主创新飞腾生态解决方案白皮书》&#xff08;简称《教育白皮书》&#xff09;。…

Flutter应用混淆技术原理与实践

在移动应用开发中&#xff0c;保护应用代码安全至关重要。Flutter 提供了简单易用的混淆工具&#xff0c;帮助开发者在构建 release 版本应用时有效保护代码。本文将介绍如何在 Flutter 应用中使用混淆&#xff0c;并提供了相关的操作步骤和注意事项。 &#x1f4dd; 摘要 本…

Nginx三大常用功能“反向代理,负载均衡,动静分离”

注意&#xff1a;以下案例在Windows系统计算机作为宿主机&#xff0c;Linux CentOS 作为虚拟机的环境中实现 一&#xff0c;Nginx配置实例-反向代理 1.反向代理 案例一 实现效果&#xff1a;使用nginx反向代理&#xff0c;访问 www.123.com 直接跳转到127.0.0.1:8080 准备工…