【论文笔记】Text2QR

论文:Text2QR: Harmonizing Aesthetic Customization and Scanning Robustness for Text-Guided QR Code Generation

Abstract

二维码通常包含很多信息但看起来并不美观。stable diffusion的出现让平衡扫描鲁棒性和美观变为可能。
为了保证美观二维码的稳定生成,引入了QR美观蓝图(QR Aesthetic Blueprint, QAB)模块,生成蓝图图像,对整个生成过程进行控制。随后,可扫描性增强潜在细化(the Scannability Enhancing Latent Refinement, SELR)过程在潜在空间内细化输出,从而强化了可扫描的鲁棒性。
这个方法利用了stable diffusion的强大生成能力,在图像美观性和二维码可扫描行之间进行权衡。

Github仓库

1 Introduction

现在有很多工作致力于改善二维码的美观性,但是大多导致了扫描的不稳定。

本文提出了Text2QR,提供无缝生成二维码的解决方案,平衡用户定义的美观性和强大的可扫描性。
框架通过三个关键步骤展开:

  • 用户通过使用stable diffusion生成他们喜欢的图案来启动该流程。
  • 协同作用开始于QAB模块中图像的混合。这个模块生成一张蓝图,合并预先生成的图像(引导图像)中的内容,并准确反映QR码中的编码信息。然后将这张蓝图图像输入ControlNet,指导Stable Diffusion保留用户定义的美观性,并维持QR码明暗块之间的所需关系。虽然生成的结果会带来解码挑战,但是其表现出明显的明暗块分布,同时保持与用户偏好一致。
  • 构建了能量方程,量化生成结果中的内容和消息的一致性。通过对潜在代码进行梯度上升迭代来优化该能量方程,逐渐增强扫描鲁棒性,同时保持内容一致性。

本文的贡献:

  • Text2QR,在二维码生成中协调用户定义的美观性和强大的可扫描性。
  • 引入QAB模块和SELR流程,用于保持美观的同时优化扫描稳健性。
  • 更优越的效果

3 Preliminary

先阐明QR码扫描仪从美观的QR码图像中解码二进制信息的过程。
给定带有QR码的彩色图像,首先通过提取亮度通道(YCbCr颜色空间中的Y通道),将其转化为灰度表示,表示为 I ∈ R H × W I\in \mathbb{R}^{H\times W} IRH×W,包含 L L L个灰度级(通常为256)。
设QR码包含 n × n n\times n n×n个模块,每个模块的大小为 a × a a\times a a×a个像素,有 n ⋅ a ≤ min ⁡ ( H , W ) n\cdot a\leq \min(H, W) namin(H,W)。这样就构建出了一个包含 n 2 n^2 n2个模块的网格,记作 M k M_k Mk,其中 k ∈ [ 1 , 2 , ⋯   , n 2 ] k\in [1,2,\cdots,n^2] k[1,2,,n2]。这个网格将图像 I I I划分为 n 2 n^2 n2个块,表示为 I M k ∈ R a × a I_{M_k}\in\mathbb{R}^{a\times a} IMkRa×a

k k k个模块被解码为1位信息 I ~ k \tilde{I}_k I~k,代表0或1,其中 I ~ ∈ R n × n \tilde{I}\in \mathbb{R}^{n\times n} I~Rn×n表示整张二进制图的结果。
通常扫描仪对于每个模块的中心子区域内的像素进行采样。
θ \theta θ为以模块 M k M_k Mk为中心、大小为 x × x x\times x x×x的正方形区域, p ∈ { 1 , 2 , ⋯   , H } × { 1 , 2 , ⋯   , W } \mathbf{p}\in\{1,2,\cdots,H\}\times \{1,2,\cdots,W\} p{1,2,,H}×{1,2,,W}表示 I I I的像素坐标。解码后的二进制值 I ~ k \tilde{I}_k I~k可以记作:
v k = 1 x 2 ∑ p ∈ θ I M k ( p ) ; I ~ k = { 0 if  v k ≤ T b , 1 if  v k ≥ T w , − 1 otherwise . v_k=\frac{1}{x^2}\sum_{\mathbf{p}\in\theta}I_{M_k}(\mathbf{p});\tilde{I}_k= \begin{cases} 0 \qquad & \text{if} \ v_k\leq\mathcal{T}_b, \\ 1 \qquad & \text{if} \ v_k\geq\mathcal{T}_w, \\ -1 \qquad & \text{otherwise}. \end{cases} vk=x21pθIMk(p);I~k= 011if vkTb,if vkTw,otherwise.
其中 T b \mathcal{T}_b Tb T w \mathcal{T}_w Tw是二值化的阈值。考虑到对称性,令 T b = L ⋅ ( 1 − η ) / 2 \mathcal{T}_b=L\cdot (1-\eta)/2 Tb=L(1η)/2 T w = L ⋅ ( 1 + η ) / 2 \mathcal{T}_w=L\cdot(1+\eta)/2 Tw=L(1+η)/2,其中 η ∈ ( 0 , 1 ) \eta\in(0,1) η(0,1)。超参数 η \eta η可以控制二值化过程的严格性。
在这里插入图片描述

4 Method

![[Pasted image 20240330222807.png]]

4.1 Overall

第一阶段,用户准备 I g I^g Ig M \mathcal{M} M(依赖关联参数 c c c z 0 z_0 z0)。
第二阶段,关键一步是通过创新的QAB模块将 I g I^g Ig M \mathcal{M} M中封装的信息无缝集成,以制定全面的蓝图,记为 I b I^b Ib
随后, I b I^b Ib在ControlNet C \mathcal{C} C中进行处理,以对stable diffusion model施加影响。这个影响涉及通过受控过程调整中间特征,定义为:
I s = G ( c , z 0 ∣ C ( I b , c , z 0 ) ) I^s=\mathcal{G}(c,z_0|\mathcal{C}(I^b,c,z_0)) Is=G(c,z0C(Ib,c,z0))
这种整合确保了协同输出 I s I^s Is和谐地平衡了源自 I g I_g Ig的审美偏好和 M \mathcal{M} M的结构约束。
最后阶段, I s I^s Is通过SELR模块进行迭代微调,改进了扫描鲁棒性,同时保留了美术品质。

最后输出是一个美观的二维码 Q Q Q

4.2 QR Aesthetic Blueprint

该模块旨在通过集成二维码信息和引导图像细节来创建可扫描的蓝图。

最初,从引导图像 I g I^g Ig中提取亮度通道,表示为 I y g I^g_y Iyg。为了确保可以比较的分布,分别使用直方图偏振(Histogram polarization)进行亮度调整和模块重组的方法进行像素重新排列来预处理 I y g I^g_y Iyg M \mathcal{M} M。最后,应用自适应半色调方法(Adaptive-Halftone)将二者混合,产生蓝图图像 I b I^b Ib

4.2.1 Histogram polarization

该模块的主要目的是协调 I y g I^g_y Iyg的直方图分布和QR码的直方图分布。该过程增强了 I y g I^g_y Iyg的对比度,产生高对比度的图像 I h c I^{hc} Ihc
直方图偏振操作由查找表 H \mathcal{H} H表示,其将像素值从一个灰度级映射到另一个灰度级。

对于每一个像素 p \mathbf{p} p,令 τ = I y g ( p ) \tau=I^g_y(\mathbf{p}) τ=Iyg(p) τ ′ = I h c ( p ) \tau'=I^{hc}(\mathbf{p}) τ=Ihc(p),将过程表示为:
τ ′ = H ( τ ) \tau'=\mathcal{H}(\tau) τ=H(τ)
n τ n_\tau nτ表示灰度级 τ ∈ [ 0 , L ) \tau\in[0,L) τ[0,L)的出现次数,为每一个灰度级 τ \tau τ引入累积分布函数(Cumulative Distribution Function, CDF):
cdf ( τ ) = ∑ i = 0 τ n i H × W \text{cdf}(\tau)=\sum_{i=0}^\tau \frac{n_i}{H\times W} cdf(τ)=i=0τH×Wni
目标是令生成的 I h c I^{hc} Ihc [ 0 , T b ) ∪ [ T w , L ) [0,\mathcal{T}_b)\cup[\mathcal{T}_w,L) [0,Tb)[Tw,L)范围内具有平坦的直方图。同时排除在 [ T b , T w ) [\mathcal{T}_b,\mathcal{T}_w) [Tb,Tw)中出现的情况。为了实现这一点,首先创建一个新图像 I h e I^{he} Ihe,其线性化CDF的值的范围为 [ 0 , L − T w + T b ) [0,L-\mathcal{T}_w+\mathcal{T}_b) [0,LTw+Tb)。令 τ ~ = I h e ( p ) \tilde{\tau}=I^{he}(\mathbf{p}) τ~=Ihe(p),于是有:
τ ~ = ( L − T w + T b ) ⋅ cdf ( τ ) \tilde{\tau}=(L-\mathcal{T}_w+\mathcal{T}_b)\cdot \text{cdf}(\tau) τ~=(LTw+Tb)cdf(τ)
随后,通过添加 T w − T b \mathcal{T}_w-\mathcal{T}_b TwTb来移动值的范围 [ T b , L ) [\mathcal{T}_b,L) [Tb,L)从而获得 I h c I^{hc} Ihc
τ ′ = H ( τ ) = { τ ~ if  τ ~ < T b , τ ~ + T w − T b if  τ ~ ≥ T b . \tau'=\mathcal{H}(\tau)=\begin{cases} \tilde{\tau} \qquad & \text{if} \ \tilde{\tau}<\mathcal{T}_b, \\ \tilde{\tau}+\mathcal{T}_w-\mathcal{T}_b \qquad & \text{if} \ \tilde{\tau}\geq\mathcal{T}_b. \\ \end{cases} τ=H(τ)={τ~τ~+TwTbif τ~<Tb,if τ~Tb.
![[Pasted image 20240331123739.png]]

4.2.2 Module reorganization

为了将QR码 M \mathcal{M} M I h c I^{hc} Ihc混合,首先将 I h c I^{hc} Ihc二值化为二值图像 I b i n I^{bin} Ibin。该二值图像指导module reorganization方法,记为 E r \mathcal{E}_r Er,该方法在保留编码信息的同时重新排列 M \mathcal{M} M的模块。该过程可以表述为:
I b i n ( p ) = { 0 if  I h c ( p ) < T b , 1 if  I h c ( p ) > T w , I^{bin}(\mathbf{p})=\begin{cases} 0 \qquad & \text{if} \ I^{hc}(\mathbf{p})<\mathcal{T}_b, \\ 1 \qquad & \text{if} \ I^{hc}(\mathbf{p})>\mathcal{T}_w, \\ \end{cases} Ibin(p)={01if Ihc(p)<Tb,if Ihc(p)>Tw,
M r = E r ( M , I b i n ) \mathcal{M}^r=\mathcal{E}_r(\mathcal{M},I^{bin}) Mr=Er(M,Ibin)

4.2.3 Adaptive-Halftone blending

考虑第 k k k个模块区域 M k M_k Mk,我们输入经过histogram polarization后的图像块 I M k h c I_{M_k}^{hc} IMkhc和一个目标值 M k r = 0  or  1 M_k^r=0\ \text{or} \ 1 Mkr=0 or 1。目标是获得蓝图 I b I^b Ib,其中 I M k b I_{M_k}^b IMkb可以被解码为正确的信息,同时保留尽可能多的图像内容。

为了达成这个目标,引入了全新的blending method:Adaptive-Halftone blending(自适应半色调混合)。
具体地,对于每个模块 M k M_k Mk,令 θ k \theta_k θk是一个大小为 u × u u\times u u×u的方形区域,以图像块 I M k h c ( u ≤ a ) I^{hc}_{M_k}(u\leq a) IMkhc(ua)为中心。用 M k r \mathcal{M}_k^r Mkr来填充 I θ k h c I_{\theta_k}^{hc} Iθkhc以生成 I M k b I_{M_k}^b IMkb。通过最小化该模块内的编码距离来优化放行区域大小 u u u u u u对应的该模块的模拟解码值定义为 E k ( I M k b ∣ u ) E_k(I_{M_k}^b|u) Ek(IMkbu)
E k ( I M k b ∣ u ) = 1 a 2 [ ∑ p ∈ θ k L ⋅ M k r + ∑ p ∉ θ k I M k b ( p ) ] = 1 a 2 [ u 2 ⋅ L ⋅ M k r + ∑ p ∉ θ k I M k b ( p ) ] \begin{align} E_k(I_{M_k}^b|u)&=\frac{1}{a^2}[\sum_{\mathbf{p}\in\theta_k} L\cdot \mathcal{M}_k^r+\sum_{\mathbf{p}\notin\theta_k} I_{M_k}^b(\mathbf{p})] \\ &=\frac{1}{a^2}[u^2\cdot L\cdot\mathcal{M}_k^r+\sum_{\mathbf{p}\notin\theta_k} I_{M_k}^b(\mathbf{p})] \end{align} Ek(IMkbu)=a21[pθkLMkr+p/θkIMkb(p)]=a21[u2LMkr+p/θkIMkb(p)]
特别地,当 u = a u=a u=a时,有 E k ( I M k b ∣ u ) = L ⋅ M k r E_k(I_{M_k}^b|u)=L\cdot\mathcal{M}_k^r Ek(IMkbu)=LMkr。目标是最小化编码距离:
u k = argmin ⁡ v ∣ ∣ E k ( I M k b ∣ u ) − L ⋅ ( η ⋅ M k r + 1 − η 2 ) ∣ ∣ u_k={\underset{v}{\operatorname{arg min}}}||E_k(I_{M_k}^b|u)-L\cdot(\eta\cdot\mathcal{M}_k^r+\frac{1-\eta}{2})|| uk=vargmin∣∣Ek(IMkbu)L(ηMkr+21η)∣∣
根据 T b \mathcal{T}_b Tb T w \mathcal{T}_w Tw的定义,可以简写上式:
s k = { argmin ⁡ s ∣ ∣ E k ( I M k b ∣ u ) − T b ∣ ∣ if  M k r = 0 , argmin ⁡ s ∣ ∣ E k ( I M k b ∣ u ) − T w ∣ ∣ if  M k r = 1 , s_k=\begin{cases} {\underset{s}{\operatorname{arg min}}}||E_k(I_{M_k}^b|u)-\mathcal{T}_b|| \qquad & \text{if} \ \mathcal{M}_k^r=0, \\ {\underset{s}{\operatorname{arg min}}}||E_k(I_{M_k}^b|u)-\mathcal{T}_w|| \qquad & \text{if} \ \mathcal{M}_k^r=1, \\ \end{cases} sk= sargmin∣∣Ek(IMkbu)Tb∣∣sargmin∣∣Ek(IMkbu)Tw∣∣if Mkr=0,if Mkr=1,
为每个模块都填充了合适尺寸的同心方形块后,继续将标记(包括查找器和对齐标记)粘贴到最终的蓝图 I b I^b Ib上。

下图展示了从不同的蓝图生成不同的 I s I^s Is
在这里插入图片描述

此调整涉及当 I h c I^{hc} Ihc有效封装模块信息以保留更多图像内容时缩小块的大小。
相反,当需要更明显的控制信号来确保模块在 I s I^s Is中的可扫描性时,它会扩大块的大小。

4.3 Scannability Enhancing Latent Refinement

生成的 I s I^s Is遵循施加的 M r \mathcal{M}^r Mr的结构约束,但因为仍有大量错误的模块,因此不可扫描。为了解决此问题,可扫描性增强潜在细化(Scannability Enhancing Latent Refinement, SELR)提供了很细致的强化过程来增强扫描鲁棒性。

包括取景器和对其图案的标记对于确定QR码的位置和角度至关重要,从而影响其扫描性。因此,在细化之前将它们的外观整合到 I s I^s Is上,记作 I s ^ \hat{I^s} Is^
在这里插入图片描述

使用VAE将增强图像 I s ^ \hat{I^s} Is^编码为潜在代码 z s z_s zs,将VAE的模型记作 E V \mathcal{E}_V EV。总体目标函数 L L L可以被分为三项之和:标记损失 L m \mathcal{L}_m Lm,编码损失 L c \mathcal{L}_c Lc,协调损失 L h \mathcal{L}_h Lh
L ( z ) = λ 1 L m ( D V ( z ) , I b ) + λ 2 L c ( D V ) ( z ) , I b ) + λ 3 L h ( D V ) ( z ) , I s ) \begin{aligned} \mathcal{L}(z)&=\lambda_1\mathcal{L}_m(\mathcal{D}_V(z),I^b) \\ &+\lambda_2\mathcal{L}_c(\mathcal{D}_V)(z),I^b) \\ &+\lambda_3\mathcal{L}_h(\mathcal{D}_V)(z),I^s) \end{aligned} L(z)=λ1Lm(DV(z),Ib)+λ2Lc(DV)(z),Ib)+λ3Lh(DV)(z),Is)
其中, λ 1 \lambda_1 λ1 λ 3 \lambda_3 λ3用于平衡各项之间的权重。 D V \mathcal{D}_V DV代表VAE编码器的解码器。 z z z是由 z s z_s zs初始化并在不断迭代中通过最小化目标函数来微调的潜变量,控制生成的QR码 Q = D V ( z ) Q=\mathcal{D}_V(z) Q=DV(z)的可扫描性和美观质量。代码损失 L c \mathcal{L}_c Lc是通过Artcoder: an end-to-end method for generating scanning-robust stylized qr codes这篇文章提出的方法计算的,该方法采用SSLayer提取模块值,通过竞争机制计算基于模块的代码损失。

4.3.1 Marker loss

扫描仪根据标记区域中的特定像素比来识别QR码。
引入一个二元掩码 K c c \mathcal{K}_{cc} Kcc,专门用于过滤标记的交叉中心区域,目的是保护基本标记功能免受因美学定制而造成的潜在损害。形式上,标记损失函数 L m \mathcal{L}_m Lm定义如下:
L m ( Q , I b ) = K c c ⋅ ∣ ∣ Q y − I b ∣ ∣ 2 \mathcal{L}_m(Q,I^b)=\mathcal{K}_{cc}\cdot||Q_y-I^b||^2 Lm(Q,Ib)=Kcc∣∣QyIb2
其中 Q y Q_y Qy表示二维码 Q Q Q的亮度通道。
这个公式确保了标记的完整性,同时允许对QR码的非标记区域进行美观修改。重点是优化视觉质量,同时保持原始扫描能力。

这个损失函数计算了 L 2 L^2 L2-Wasserstein距离,记为 W 2 W_2 W2,计算 Q Q Q的特征图和 I s I^s Is的距离。
特别地,

4.3.2 Harmonizing Loss

解决了与标记和代码相关的可扫描性问题后,要进一步确保通过协调损失来保留美学品质。特征图 f i f_i fi通过预训练的VGG-19网络的 i ∈ [ 1 , 6 , 11 , 18 , 25 ] i\in[1,6,11,18,25] i[1,6,11,18,25]层提取而出,损失可以被计算为:
L h = ∑ i W 2 ( f i ( Q ) , f i ( I s ) ) \mathcal{L}_h=\sum_i W_2(f_i(Q),f_i(I^s)) Lh=iW2(fi(Q),fi(Is))
P 1 , P 2 P_1,P_2 P1,P2分别为 R n \mathbb{R}^n Rn上具有 μ 1 , μ 2 ∈ R n \mu_1,\mu_2\in\mathbb{R}^n μ1,μ2Rn的平均值、非奇异协方差矩阵 C 1 , C 2 ∈ R n × n C_1,C_2\in\mathbb{R}^{n\times n} C1,C2Rn×n L 2 L^2 L2-Wasserstein距离 W 2 ( P 1 , P 2 ) W_2(P_1,P_2) W2(P1,P2)可以被定义为:
A = trace ( C 1 + C 2 − 2 ( C 1 C 2 C 1 ) 1 2 ) A=\text{trace}(C_1+C_2-2(\sqrt{C_1}C_2\sqrt{C_1})^{\frac{1}{2}}) A=trace(C1+C22(C1 C2C1 )21)
W 2 ( P 1 , P 2 ) = ∣ ∣ μ 1 − μ 2 ∣ ∣ 2 + A W_2(P_1,P_2)=\sqrt{||\mu_1-\mu_2||^2+A} W2(P1,P2)=∣∣μ1μ22+A
协调损失的集成确保优化的输出不仅满足功能要求,而且保留美学品质。本质上,SELR模块利用标记、编码、协调损失来优化生成的QR码的可扫描性和美观性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/510032.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

STM32FATFS(未完待续)

注意&#xff0c;本博客适合像我一样的小白&#xff0c;会的不多&#xff0c;但是想快速做些东西&#xff0c;不适合会写驱动的大佬。另外&#xff0c;示例代码中的注释有误&#xff08;从多个项目中移植过来的&#xff0c;未做更改&#xff09;&#xff0c;请不要被误导&#…

ICLR 2024 | 鸡生蛋蛋生鸡?再论生成数据能否帮助模型训练

ChatGPT狂飙160天&#xff0c;世界已经不是之前的样子。 新建了人工智能中文站https://ai.weoknow.com 每天给大家更新可用的国内可用chatGPT资源 发布在https://it.weoknow.com 更多资源欢迎关注 随着生成模型&#xff08;如 ChatGPT、扩散模型&#xff09;飞速发展&#x…

【详细讲解语言模型的原理、实战与评估】

&#x1f308;个人主页:程序员不想敲代码啊&#x1f308; &#x1f3c6;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家&#x1f3c6; &#x1f44d;点赞⭐评论⭐收藏 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提…

《2023网络安全行业薪资发展趋势报告》.pdf

《2023网络安全行业薪资发展趋势报告》.pdf 前段时间看到了一份网络安全的最新数据&#xff0c;反映了2023年截至目前的网络安全行业&#xff0c;以及网络安全人才的发展情况。 前段时间忙着赶项目一直没时间&#xff0c;今天终于有空和你唠嗑了。 很多网工小白对安全的向往…

基于DCT(离散余弦变换)的图像水印算法,Matlab实现

博主简介&#xff1a; 专注、专一于Matlab图像处理学习、交流&#xff0c;matlab图像代码代做/项目合作可以联系&#xff08;QQ:3249726188&#xff09; 个人主页&#xff1a;Matlab_ImagePro-CSDN博客 原则&#xff1a;代码均由本人编写完成&#xff0c;非中介&#xff0c;提供…

vue+elementUI搭建动态表头的表格

前提&#xff1a;以下代码是vue2项目结合elementUi完成的 数据结构 后端传来的数据是两个list&#xff0c;一个表头的list&#xff0c;一个表格内容的list // 表头 headTableAtts: [{ columnLabel: 姓名, columnName: name },{ columnLabel: 年龄, columnName: age },{ colu…

【Linux】防火墙iptables详解

目录 一、防护墙概述 二、防火墙 2.1名词 2.2使用规则 2.3表与链 2.3.1简介 2.3.2每个表说明 1&#xff09;filter表 2)nat表 2.4环境的配置 2.5iptables的命令参数 2.6 配置filter表规则 2.6.1备份与恢复 2.6.2案例1&#xff1a;禁止访问22端口 2.6.3案例2&…

GT收发器第六篇_GT channel内部时钟关系

文章目录 一、TX端时钟二、RX端时钟 一、TX端时钟 TX端可分为4个区域&#xff0c;分别为FPGA TX接口、PCS靠FPGA侧、PCS靠PMA侧、PMA&#xff0c;如下图。GTX/GTH发射器包括TXBUFFER和TX相位校准电路&#xff0c;以解决时钟域之间的相位差。TX相位校准电路用于TXBUFFER被旁路时…

element-ui badge 组件源码分享

今日简单分享 badge 组件的源码实现&#xff0c;主要从以下两个方面&#xff1a; 1、badge 组件页面结构 2、badge 组件属性 一、badge 组件页面结构 二、badge 组件属性 补充几个标签的用途&#xff1a; sub&#xff1a;下标、sup&#xff1a;上标、var 变量 代码如下&am…

AIGC之gradio系列学习教程(二)Components

简述: 让我们继续了解一下 Gradio 的一些主要功能。本指南旨在对构建演示时应注意的各种事项进行高级概述。 Components Gradio 包含 30 多个预构建组件(以及许多用户构建的自定义组件),只需一行代码即可在演示中用作输入或输出。这些组件对应于机器学习和数据科学中的常…

C++初学者:如何优雅地写程序

我喜欢C语言的功能强大&#xff0c;简洁&#xff0c;我也喜欢C#的语法简单&#xff0c;清晰&#xff0c;写起来又方便好用。 一、为什么不用C语言写程序。 C语言用来做题目&#xff0c;考试研究是很方便的&#xff0c;但是用来写程序做软件&#xff0c;你就会发现&#xff0c…

解决Centos7无法连接网络和访问网页连接不上问题

一、网络无法连接问题 网络无法连接的问题我查到了一个很良心的操作&#xff0c;不用重装&#xff0c;因为可能是你虚拟机设置上的问题。我先写我的解决方案&#xff0c;再附上其他几种解决方案。 问题一&#xff1a; 虚拟机的问题****加粗样式 解决&#xff1a; &#xff08;…

landsat8数据产品说明

1、下载数据用户手册 手册下载网址&#xff0c;搜索landsat science关键词&#xff0c;并点击到官网下载。 2、用户手册目录 3、landsat8数据产品说明 具体说明在手册的第四章&#xff0c;4.1.4数据产品章节&#xff0c;具体描述如下&#xff1a; 英文意思&#xff1a; L8 的…

Plesk环境中签发免费SSL证书的操作与成效

在过去的一段时间内&#xff0c;我专注于在Plesk控制面板环境中为多个网站成功签发免费SSL证书&#xff0c;确保了这些站点的安全传输和用户数据保护。以下是对这一工作的全面总结&#xff0c;包括突出的工作亮点、具体实施过程、取得的成绩以及下一阶段的工作规划。 一、工作亮…

【C++】新的类功能和可变参数模板

目录 一、新的类功能1.1 默认成员函数1.1.1 移动构造函数1.1.2 移动赋值运算符重载 1.2 关键字default1.3 关键字delete 二、可变参数模板2.1 可变参数的函数模板2.2 递归方式展开函数2.3 empalce 一、新的类功能 1.1 默认成员函数 在之前的学习过程中&#xff0c;我们已经知…

走进车厂 | 移远通信以前沿车载技术,照亮智能网联汽车产业创新发展之路

无钥匙自动解锁方便快捷、实时路况导航精准高效、语音指令轻松控制车辆、车载娱乐系统丰富多样……随着智能化、数字化浪潮的不断推进&#xff0c;现如今的汽车出行焕然一新。 正如我们所见&#xff0c;汽车产业正在经历前所未有的变革。物联网、车联网等前沿技术的发展和应用&…

反弹shell的方法和场景

Netcat反弹Shell 1 NC正向反弹shell Netcat简称NC,是一个简单、可靠的网络工具,被誉为网络界的瑞士军刀。通NC可以进行端口扫描、 反弹Shell、端口监听和文件传输等操作,常用参数如下&#xff1a; -c指定连接后要执行的shell命令-e指定连接后要执行的文件名-k配置 Socket一…

C语言指针 深入浅出讲解

指针在我的理解就是一个指向值的地址&#xff0c;地址是连续的&#xff0c;比如这个&#xff1a; 我写了一个数组&#xff0c;分别赋值4&#xff0c;5&#xff0c;6...11&#xff1b; 它们的地址分别如下&#xff1a; 可以看到地址增长是4&#xff0c;这是因为&#xff0c;地…

C++其他语法..

1.运算符重载 之前有一个案例如下所示 其中我们可以通过add方法将两个点组成一个新的点 class Point {friend Point add(Point, Point);int m_x;int m_y; public:Point(int x, int y) : m_x(x), m_y(y) {}void display() {cout << "(" << m_x <<…

Codigger Desktop:开发者的利器,每个人的好帮手(一)

在当今这个信息化、数字化的时代&#xff0c;开发者们面临着前所未有的挑战和机遇。为了更好地助力开发者们应对这些挑战&#xff0c;抓住机遇&#xff0c;Codigger应运而生。其中Codigger Desktop 是一款基于 Codigger 系统的桌面应用&#xff0c;为用户提供直观易用的操作界面…