一、ARM的七种工作模式
Arm微处理器支持7种工作模式,分别为:
1. 用户模式(Usr) 用于正常执行程序
2. 系统模式(sys) 运行均有特权的操作系统任务
3. 快速中断模式(FIQ) 用于高速数据传输
4. 外部中断模式(IRQ) 用于通常的中断处理
5. 管理模式(SVC) 操作系统使用的保护模式(高权限),复位和软件中断进入
6. 数据访问终止模式(abt) 当数据或指令预取终止时进入该模式,可用于虚拟内存及存储保护
7. 未定义指令终止模式(und) 用于支持硬件协处理器的软件仿真(浮点、微量运算)
其中除了用户模式以外,其余所有6种模式称之为非用户模式也叫特权模式,权限比用户模式高。
二:ARM的异常模式
特权模式中除去系统模式(sys)外的5种模式称之为异常模式(在用户模式和系统模式看来这些都属于异常),常用于处理中断或异常,以及需要访问受保护的系统资源等情况。
三:ARM的异常源
1.reset复位异常(SVC异常模式)
当CPU刚上电时或按下reset重启键之后进入该异常,该异常在管理模式下处理。
2.软件中断指令(swi)异常 (SVC异常模式)
该异常是应用程序自己调用时产生的,用于用户程序申请访问硬件资源时,例如:printf()打印函数,要将用户数据打印到显示器上,用户程序要想实现打印必须申请使用显示器,而用户程序又没有外设硬件的使用权,只能通过使用软件中断指令切换到内核态,通过操作系统内核代码来访问外设硬件,内核态是工作在特权模式下,操作系统在特权模式下完成将用户数据打印到显示器上。这样做的目的无非是为了保护操作系统的安全和硬件资源的合理使用,该异常在管理模式下处理。
3.未定义指令异常主动(und异常模式)
该异常发生在流水线技术里的译码阶段,如果当前指令不能被识别为有效指令,产生未定义指令异常,该异常在未定义异常模式下处理。
4.预取指令中止异常(abt异常模式)
该异常发生在CPU流水线取指阶段,如果目标指令地址是非法地址进入该异常,该异常在中止异常模式下处理。
5.数据中止访问异常(abt异常模式)
该异常发生在要访问数据地址不存在或者为非法地址时,该异常在中止异常模式下处理。
6.irq/fiq一般/快速中断请求(IRQ/FIQ异常模式)
CPU和外部设备是分别独立的硬件执行单元,CPU对全部设备进行管理和资源调度处理,CPU要想知道外部设备的运行状态,要么CPU定时的去查看外部设备特定寄存器,要么让外部设备在出现需要CPU干涉处理时“打断”CPU,让它来处理外部设备的请求,毫无疑问第二种方式更合理,可以让CPU“专心”去工作,这里的“打断”操作就叫做中断请求,根据请求的紧急情况,中断请求分一般中断和快速中断,FIQ快速中断具有最高中断优先级和最小的中断延迟(FIQ 比 IRQ快的原因有三个:fiq 比 irq 的优先级高; FIQ 向量位于向量表的最末端,异常处理不需要跳转; FIQ 比 IRQ 多5个私有的寄存器(r8-r12),在中断操作时,压栈出栈操作的少)通常用于处理高速数据传输及通道的中数据恢复处理,如DMA等,绝大部分外设使用一般中断请求。
异常源 | 含义 | ARM工作模式 |
RESET (reset) | 复位异常源 | SVC模式(Supervisor保护模式) |
Swi(Software Interrupt ) | 软中断异常源 | SVC模式 |
Undefine(undefined instruction) | 未定义指令异常源 | und模式 |
Prefetch Abort | 取指异常源 | abort模式 |
Data Abort | 数据异常源 | abort模式 |
IRQ (Interrupt Request ) | 外部异常源 | IRQ模式 |
FIQ(Fast Interrupt Request) | 快中断异常源 | FIQ模式 |
四. ARM的异常源优先级
Reset→ Data abort→ FIQ→ IRQ→ Prefetch abort→ Undefined instruction/SWI。
五、异常向量表
异常向量表是一段特定内存地址空间,每种ARM异常对应一个字长空间(4Bytes),正好是一条32位指令长度,当异常发生时,CPU强制将PC的值设置为当前异常对应的固定内存地址。
1. 异常向量表:
跳入异常向量表操作是异常发生时,硬件自动完成的,剩下的异常处理任务完全交给了程序员。由上表可知,异常向量是一个固定的内存地址,我们可以通过向该地址处写一条跳转指令,让它跳向我们自己定义的异常处理程序的入口,就可以完成异常处理了。
正是由于异常向量表的存在,才让硬件异常处理和程序员自定义处理程序有机联系起来。异常向量表里0x00000000地址处是reset复位异常,之所以它为0地址,是因为CPU在上电时自动从0地址处加载指令,由此可见将复位异常安装在此地址处也是前后接合起来设计的,不得不感叹CPU设计师的伟大,其后面分别是其余7种异常向量,每种异常向量都占有四个字节,正好是一条指令的大小,最后一个异常是快速中断异常,将其安装在此也有它的意义,在0x0000001C地址处可以直接存放快速中断的处理程序,不用设置跳转指令,这样可以节省一个时钟周期,加快快速中断处理时间。
存储器映射地址0x00000000是为向量表保留的。在有些处理器中,向量表可以选择定位在高地址0xFFFF0000处【可以通过协处理器指令配置】,当今操作系统为了控制内存访问权限,通常会开启虚拟内存,开启了虚拟内存之后,内存的开始空间通常为内核进程空间,和页表空间,异常向量表不能再安装在0地址处了。
七、异常处理的返回
异常处理完成之后,返回被打断程序继续执行,具体操作如下:
- 恢复被打断程序运行时寄存器数据
- 恢复程序运行时状态CPSR
- 通过进入异常时保存的返回地址,返回到被打断程序继续执行
1. 异常返回地址
一条指令的执行分为:取指,译码,执行三个主要阶段, CPU由于使用流水线技术,造成当前执行指令的地址应该是PC – 8(32位机一条指令四个字节),那么执行指令的下条指令应该是PC – 4。在异常发生时,CPU自动会将将PC – 4 的值保存到LR里,但是该值是否正确还要看异常类型才能决定。
各模式的返回地址说明如下:
1)一般/快速中断请求:
快速中断请求和一般中断请求返回处理是一样的。通常处理器执行完当前指令后,查询FIQ/IRQ中断引脚,并查看是否允许FIQ/IRQ中断,如果某个中断引脚有效,并且系统允许该中断产生,处理器将产生FIQ/IRQ异常中断,当FIQ/IRQ异常中断产生时,程序计数器pc的值已经更新,它指向当前指令后面第3条指令(对于ARM指令,它指向当前指令地址加12字节的位置;当FIQ/IRQ异常中断产生时,处理器将值(pc-4)保存到FIQ/IRQ异常模式下的寄存器lr_irq/lr_irq中,它指向当前指令之后的第2条指令,因此正确返回地址可以通过下面指令算出:
SUBS PC,LR_irq,#4 ; 一般中断
SUBS PC,LR_fiq,#4 ; 快速中断
注:LR_irq/LR_fiq分别为一般中断和快速中断异常模式下LR,并不存在LR_xxx寄存器,为方便读者理解加上_xxx,下同。
2)预取指中止异常:
在指令预取时,如果目标地址是非法的,该指令被标记成有问题的指令,这时,流水线上该指令之前的指令继续执行,当执行到该被标记成有问题的指令时,处理器产生指令预取中止异常中断。发生指令预取异常中断时,程序要返回到该有问题的指令处,重新读取并执行该指令,因此指令预取中止异常中断应该返回到产生该指令预取中止异常中断的指令处,而不是当前指令的下一条指令。
指令预取中止异常中断由当前执行的指令在ALU里执行时产生,当指令预取中止异常中断发生时,程序计数器pc的值还未更新,它指向当前指令后面第2条指令(对于ARM指令,它指向当前指令地址加8字节的位置;此时处理器将值(pc-4)保存到lr_abt中,它指向当前指令的下一条指令,所以返回操作可以通过下面指令实现:
SUBS PC,LR_abt,#4
3)未定义指令异常:
未定义指令异常中断由当前执行的指令在ALU里执行时产生,当未定义指令异常中断产生时,程序计数器pc的值还未更新,它指向当前指令后面第2条指令(对于ARM指令,它指向当前指令地址加8字节的位置;对于Thumb指令,它指向当前指令地址加4字节的位置),当未定义指令异常中断发生时,处理器将值(pc-4)保存到lr_und中,此时(pc-4)指向当前指令的下一条指令,所以从未定义指令异常中断返回可以通过如下指令来实现:
MOV PC, LR_und
4)软中断指令(SWI)异常:
SWI异常中断和未定义异常中断指令一样,也是由当前执行的指令在ALU里执行时产生,当SWI指令执行时,pc的值还未更新,它指向当前指令后面第2条指令(对于ARM指令,它指向当前指令地址加8字节的位置;),当未定义指令异常中断发生时,处理器将值(pc-4)保存到lr_svc中,此时(pc-4)指向当前指令的下一条指令,所以从SWI异常中断处理返回的实现方法与从未定义指令异常中断处理返回一样:
MOV PC, LR_svc
5)数据中止异常:
发生数据访问异常中断时,程序要返回到该有问题的指令处,重新访问该数据,因此数据访问异常中断应该返回到产生该数据访问中止异常中断的指令处,而不是当前指令的下一条指令。 数据访问异常中断由当前执行的指令在ALU里执行时产生,当数据访问异常中断发生时,程序计数器pc的值已经更新,它指向当前指令后面第3条指令(对于ARM指令,它指向当前指令地址加12字节的位置;)。此时处理器将值(pc-4)保存到lr_abt中,它指向当前指令后面第2条指令,所以返回操作可以通过下面指令实现:
SUBS PC, LR_abt, #8
上述每一种异常发生时,其返回地址都要根据具体异常类型进行重新修复返回地址,「再次强调下,被打断程序的返回地址保存在对应异常模式下的LR_excep里」。
2. 模式恢复
异常发生后,进入异常处理程序时,将用户程序寄存器R0~R12里的数据保存在了异常模式下栈里面,异常处理完返回时,要将栈里保存的的数据再恢复回原先R0~R12里。
毫无疑问在异常处理过程中必须要保证异常处理入口和出口时栈指针SP_excep要一样,否则恢复到R0~R12里的数据不正确,返回被打断程序时执行现场不一致,出现问题,虽然将执行现场恢复了,但是此时还是在异常模式下,CPSR里的状态是异常模式下状态。
因此要恢复SPSR_excep里的保存状态到CPSR里,SPSR_excep是被打断程序执行时的状态,在恢复SPSR_excep到CPSR的同时,CPU的模式和状态从异常模式切换回了被打断程序执行时的模式和状态。
此刻程序现场恢复了,状态也恢复了,但PC里的值仍然指向异常模式下的地址空间,我们要让CPU继续执行被打断程序,因此要再手动改变PC的值为进入异常时的返回地址,该地址在异常处理入口时已经计算好,直接将PC = LR_excep即可。
上述操作可以一步一步实现,但是通常我们可以通过一条指令实现上述全部操作:
LDMFD SP_excp!, {r0-r12, pc}^
注:SP_excep为对应异常模式下SP,^符号表示恢复SPSR_excep到CPSR。