计算机网络——33多点访问协议

多点访问协议

多路访问链路和协议

两种类型的链路(一个子网内部链路连接形式)

  • 点对点
    • 拨号访问的PPP
    • 以太网交换机和主机之间的点对点链路
  • 广播
    • 传统以太网
    • HFC上行链路
    • 802.11无线局域网

在这里插入图片描述

多路访问协议

单个共享的广播型链路
2个过更多结点同时传送:冲突

  • 多个结点在同一个时刻发送,则会收到2个或多个信号叠加

多路访问协议(介质访问控制协议:MAC)

  • 分布式算法 - 决定节点如何使用共享信道,即:决定节点什么时候可以发送
  • 关于共享控制的通信必须用借助信道本身传输
    • 没有外带的信道,各节点使用其协调信道使用
    • 用于传输控制信息

理想的多路访问协议

给定:Rbps的广播信道
必要条件

  1. 当一个节点要发送时,可以R速率发送
  2. 当M个节点要发送,每个可以以R/M的平均速率发送
  3. 完全分布的
    • 没有特殊节点协调发送
    • 没有时钟和时隙的同步
  4. 简单

MAC(媒体访问控制)协议:分类

3大类

  • 信道划分
    • 把信道划分为小片(时间、频率、编码)
    • 分配片给每个节点专用
  • 随机访问
    • 信道不划分,允许冲突
    • 冲突后恢复
  • 依次轮流
    • 节点依次轮流
    • 但是有很多数据传输的节点可以获得较长的信道使用权

信道划分MAC协议

TDMA

TMDA:time division multiple access

  • 轮流使用信道,信道的时间分为周期
  • 每个站点使用每周期中固定的时隙(长度 = 帧传输时间)传输帧
  • 如果站点无帧传输,时隙空闲 -> 浪费
  • 如:6站LAN:1,3,4有数据报,时隙2,5,6空闲

在这里插入图片描述

FDMA

FDMA:frequency division multiple access

  • 信道的有效频率范围被分为一个个小的频段
  • 每个站点被分配一个固定的频段
  • 分配给站点的频段如果没有被使用,则空闲
  • 例如:6站的LAN,1,3,4有数据报,频段2,5,6空闲

在这里插入图片描述

码分多路访问(CDMA)
  • CDMA(code division multiple access)
    • 所有站点在整个频段上同时进行传输,采用编码原理加以区分
    • 完全无冲突
    • 假定:信号同步很好,线性叠加
  • 比方
    • TDM:不同的人在不同的时刻讲话
    • FDM:不同的组在不同的小房间里通信
    • CDMA:不同的人使用不同的语言讲话

随机存取协议

  • 当节点有帧要发送时
    • 以信道带宽的全部R bps发送
    • 没有节点间的预先协调
  • 两个或更多节点同时传输,会发生 -> 冲突
  • 随机存取协议规定
    • 如何检测冲突
    • 如何从冲突中恢复(如:通过稍后的重传)
  • 随机MAC协议
    • 时隙ALOHA
    • ALOHA
    • CSMA、CSMA/CD、CSMA/CA
时隙ALOHA

假设

  • 所有的帧都是等长的
  • 时间被划分成相等的时隙,每个时隙可发送一帧
  • 节点只在时隙开始时发送帧
  • 节点在时钟上是同步的
  • 如果两个或多个节点在一个时隙传输,所有的站点都能检测到冲突

运行

  • 当节点获取新的帧,在下一个时隙传输
  • 传输时没有检测到冲突,成功
    • 节点能够在下一时刻发送新帧
  • 检测时如果检测到冲突,失败
    • 节点在每一个随后的时隙以概率p重传帧直到成功

在这里插入图片描述

优点

  • 节点可以以信道带宽全部连续传输
  • 高度分布:仅需要节点之间在间隙上的同步
  • 简单

缺点

  • 存在冲突,浪费时间
  • 即使有帧要发送,仍然有可能存在空闲的时隙
  • 节点检测冲突的时间 < 帧传输的时间
    • 必须传完
  • 需要时钟上同步
时隙ALOHA的效率

效率:当有很多节点,每个节点有很多帧要发送时,x%的时隙是成功传输帧的时隙

  • 假设N个节点,每个节点都有很多帧要发送,在每个时隙中的传输概率是p
  • 一个节点成功传输概率是 p ( 1 − p ) N − 1 p(1-p)^{N-1} p(1p)N1
  • 任何一个节点的成功概率是 N p ( 1 − p ) N − 1 Np(1-p)^{N-1} Np(1p)N1
  • N个节点的最大效率:求出使 f ( P ) = N p ( 1 − p ) N − 1 f(P) = Np(1-p)^{N-1} f(P)=Np(1p)N1 最大的 p ∗ p^ * p
  • 代入 p ∗ p^* p得到最大 f ( p ∗ ) f(p^{*}) f(p)
  • N为无穷大时的极限为1/e = 0.37

最好情况,信道利用率为37%

纯ALOHA
  • 无时隙ALOHA:简单、无需节点间在时间上同步
  • 当有帧需要传输:马上传输
  • 冲突的概率增加:
    • 帧在 t 0 t_0 t0发送,和其他在$[t_0 - 1,t_0 + 1]区间内开始发送的帧冲突
    • 和当前帧冲突的区间(其他帧再次区间开始传输)增大了一倍

在这里插入图片描述

纯ALOHA的效率

P(指定节点成功) = P(节点传输)
P(其他节点在 [ t 0 − 1 , t 0 ] [t_0 - 1,t_0] [t01,t0]不传)
P(其他节点在 [ t 0 , t 0 + 1 ] [t_0,t_0 + 1] [t0,t0+1]不传)
= p ⋅ ( 1 − p ) N − 1 ⋅ ( 1 − p ) N − 1 = p ⋅ ( 1 − p ) 2 ( N − 1 ) p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1} =p \cdot (1-p)^{2(N-1)} p(1p)N1(1p)N1=p(1p)2(N1)
选择最佳的p、N趋向无穷大
= 1/(2e) = 17.5%

效率比时隙ALOHA更差了

CSMA冲突

冲突仍然可能发生
由传播延迟造成:两个节点可能侦听不到正在进行的传输

冲突
整个冲突帧的传输时间都被浪费了,是无效的传输(红黄区域)

注意
传播延迟(距离)决定了冲突的概率
节点依据本地的信道使用情况来判断全部信道的使用情况

在这里插入图片描述

CSMA/CD(冲突检测)

CSMA/CD

  • 载波倾听CSMA:和在CSMA中一样发送前倾听信道
  • 没有传完一个帧就可以在短时间内检测到冲突
  • 冲突发生时则传输终止,减少对信道的浪费

冲突检测CD技术,有线局域网中容易实现

  • 检测信号强度,比较传输与接收到的信号是否相同
  • 通过周期的过零点检测

人类类比:礼貌的对话人

在这里插入图片描述

以太网CSMA/CD算法
  1. 适配器获取数据报,创建帧
  2. 发送前:监听信道CS
    1. 闲:开始传输帧
    2. 忙:一直等到闲再发送
  3. 发送过程中,冲突检测CD
    1. 没有冲突:成功
    2. 检测到冲突:放弃,之后尝试重发
  4. 发送方适配器检测到冲突,除放弃外,还发送一个Jam信号,所有听到冲突的适配器也是如此
    强化冲突:让所有站点都知道冲突
  5. 如果放弃,适配器进入指数退避状态
    在第m次失败后,适配器随机选择一个(0,1,2,…, 2 m − 1 2^{m-1} 2m1)中K,等待 K ∗ 512 K^*512 K512位时,然后转到步骤2
    exponential backoff 二进制指数退避算法

指数退避

  • 目标:适配器试图适应当前负载,在一个变化的碰撞窗口中随机选择时间点尝试重发
    • 高负载:重传窗口时间大,减少冲突,但等待时间长
    • 低负载:使得各站点等待时间少,但冲突概率大
  • 首次碰撞:在{0,1}选择K,延迟 K ∗ 512 K^*512 K512位时
  • 第2次碰撞:在{0,1,2,3}选择K
  • 第10次碰撞:在{0,1,2,3,…,1023}选择K
CSMA/CD效率
  • T p r o p T_{prop} Tprop = LAN上2个节点的最大传播延迟
  • t t r a n s t_{trans} ttrans = 传输最大帧的时间
    e f f i c i e n c y = 1 1 + 5 t p r o p / t t r a n s efficiency = \frac{1}{1 + 5t_{prop}/t_{trans}} efficiency=1+5tprop/ttrans1
  • 效率变为1
    • t p r o p t_{prop} tprop变成0时
    • t t r a n s t_{trans} ttrans变为无穷大时
  • 比起ALOHA更好的性能,而且简单,廉价,分布式
无线局域网CSMA/CA

在这里插入图片描述

WLAN构成

  • 基站:AP
  • 无线链路
  • 移动主机节点
无线局域网中的MAC:CSMA/CA
  • 冲突: 2 + 2^+ 2+站点(AP或者站点)在同一时刻发送
  • 802.11:CSMA - 发送前侦听信道
    • 不会和其他节点正在进行的传输发生冲突
  • 802.11:没有冲突检测
    • 无法检测冲突:自身信号远远大于其他信号节点
    • 即使能CD:冲突 != 成功
    • 目标:avoid collisions:CSMA/C(collision)A(voidance)
      • 无法CD:一旦发送一股脑全部发送完毕,不CD
      • 为了避免无CD带来的信道利用率低的问题,事前进行冲突避免
无线局域网:CSMA/CA

发送方

  1. 如果站点检测到信道空闲持续DIFS长,则传输整个帧(no CD)
  2. 如果检测到信道忙碌,那么选择一个随机回退值,并在信道空闲时递减该值;如果信道忙碌,回退值不会变化;到数到0时(只生在信道闲时)发送整个帧,如果没有收到ACK,增加回退值并对之进行重复

802.11接收方

  • 如果帧正确,则在SIFS后发送ACK

无线链路特性,需要每帧确认;例如:由于隐藏终端问题,在接收端可能形成干扰,接收方没有正确的收到,链路层可靠机制)

在这里插入图片描述

IEEE 802.11 MAC 协议:CSMA/CA

在count down时,侦听到了信道空闲为什么不发送,而要等到0时再发送

  • 2个站点有数据帧需要发送,第三个节点正在发送
  • LAN CD:让2者听完第三个节点发完,立即发送
    • 冲突:放弃当前的发送,避免了信道的浪费于无用冲突帧的发送
    • 代价不昂贵
  • WLAN:CA
    • 无法CD,一旦发送就必须发完,如冲突信道浪费严重,代价高昂
    • 思想:尽量事先避免冲突,而不是在发生冲突时放弃然后重发
    • 听到发送的站点,分别选择随机值,回退到0发送
      • 不同的随机值,一个站点会胜利
      • 失败站点会冻结计数器,当胜利节点发完再发

无法完全避免冲突

  • 两个站点相互隐藏
    • A,B相互隐藏,C在传输
    • A,B选择了随机回退值
    • 一个节点如A胜利了,发送
    • 而B节点收不到,顺利count down到0发送
    • A,B的发送在C附近形成了干扰
  • 选择了非常靠近的随机回退值
    • A,B选择的值非常近
    • A到0后发送
    • 但是这个信号还没到达B时
    • B也到0了,发送
    • 冲突
冲突避免 RTS - CTS交换

思路:允许发送方“预约”信道,而不是随机访问该信道:避免长数据帧的冲突(可选项)

  • 发送方首先使用CSMA向BS发送一个小的RTS分组
    • RTS可能会冲突(但是由于比较短,浪费信道较少)
  • BS广播 clear - to - send CTS,作为RTS的相应
  • CTS能够被所有涉及到的节点听到
    • 发送方发送数据帧
    • 其他节点抑制发送

采用小的预约分组,可以完全避免数据帧的冲突

在这里插入图片描述

线缆接入网络

在这里插入图片描述

  • 多个40Mps 下行(广播)信道,FDM
    • 下行:通过FDM分成若干信道,互联网、数字电视等
    • 互联网信道:只有1个CMTS在其上传输
  • 多个30Mps 上行的信道,FDM
    • 多路访问:所有用户使用:接着TDM分成微时隙
    • 部分时隙分配,部分时隙竞争

DOCSIS:TDM上行信道

  • 采用TDM的方式将上行信道分成若干微时隙:MAP指定
  • 站点采用分配给他的微时隙上行数据传输:分配
  • 在特殊的上行微时隙中,各站点请求上行微时隙:竞争
    • 各站点对于该时隙的使用是随机访问的
    • 一旦碰撞(请求不成功,结果是:在下行的MAP中没有为他分配,则二进制退避)选择时隙上传输

在这里插入图片描述

轮流 MAC 协议

信道划分MAC协议:

  • 共享信道在高负载时是有效和公平的
  • 在低负载时效率低下
    • 只能等到自己的时隙开始发送或者利用1/N的信道频率发送
    • 当只有一个节点有帧传时,也只能够得到1/N个带宽分配

随机访问MAC协议

  • 在低负载时效率高:单个节点完全可以利用信道全部带宽
  • 高负载时,冲突开销较大,效率极低,时间很多浪费在冲突中

轮流协议

  • 有二者的优点

轮询

  • 主节点邀请从节点依次传送
  • 从节点一般比较“dumb”
  • 缺点
    • 轮询开销:轮训本身消耗信道带宽
    • 等待时间:每个节点需等到主节点轮询后开始传输,即使只有一个节点,也需要等到轮询一周后才能够发送
    • 单点故障:主节点失效时造成整个系统无法工作

在这里插入图片描述

令牌传递

  • 控制令牌(token)循环从一个节点到下一个节点传递
  • 令牌报文:特殊的帧
  • 缺点
    • 令牌开销:本身消耗带宽
    • 延迟:只有等到抓住令牌,才可传输
    • 单点故障
      • 令牌丢失系统级故障,整个系统无法传输
      • 复杂机制重新生成令牌

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/508958.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C语言】联合和枚举

个人主页点这里~ 联合和枚举 一、联合体1、联合体类型的声明2、联合体成员的特点3、与结构体对比4、计算联合体大小 二、枚举1、枚举的声明2、枚举的优点3、枚举类型的使用 一、联合体 1、联合体类型的声明 联合体的定义与结构体相似&#xff0c;但是联合体往往会节省更多的空…

软考 - 系统架构设计师 - 数据流图案例题

阅读以下关于系统数据分析与建模的叙述&#xff0c;在答题纸上回答问题1至问题3。 【说明】 某公司正在研发一套新的库存管理系统。系统中一个关键事件是接收供应商供货。项目组系统分析员小王花了大量时间在仓库观察了整个事件的处理过程&#xff0c;并开发出该过程所执行活动…

VTK中polydata的属性数据结构表示和用法

vtk中通过vtkDataArray进行数据的存储&#xff0c;通过vtkDataObject进行可视化数据的表达&#xff0c;在vtkDataObject内部有一个vtkFieldData的实例&#xff0c;负责对数据的表达&#xff1a; vtkFieldData存储数据的属性数据&#xff0c;该数据是对拓扑结构和几何结构信息的…

局域网与城域网(练习题)

局域网与城域网 ⭐️⭐️⭐️⭐️ 红色标记为答案⭐️⭐️⭐️⭐️ ⭐️⭐️⭐️ 蓝色标记为要点解析⭐️⭐️⭐️ 1.以下关于VLAN标记的说法中&#xff0c;错误的是&#xff08;&#xff09;。 A.交换机根据目标地址和VLAN标记进行转发决策 B.进入目的网段时&#xff0c;交换机…

C语言-atoi函数的模拟

模拟术语讲解 首先&#xff0c;需要定义一个标志位变量sign&#xff0c;用于表示转换结果的合法性1。定义一个函数My_atoi&#xff0c;用于实现atoi的功能1。在My_atoi函数中&#xff0c;首先遍历字符串&#xff0c;直到遇到第一个非空格字符1。如果第一个字符不是数字或正负号…

通讯录改造———文件版本

上一篇文章我们详细讲了文件操作&#xff0c;这时候我们就可以把通讯录保存到文件中&#xff0c;这样即使程序退出了&#xff0c;联系人的信息也还是保存着&#xff0c;下一次启动程序时我们就可以把文件中的数据读取到程序中来使用。 保存 首先我们要在退出通讯录之前把联系人…

Spring Boot 介绍

1、SpringBoot 介绍 用通俗的话讲&#xff0c;SpringBoot 在Spring生态基础上发展而来&#xff0c;它的发现不是取代Spring&#xff0c;是为了让人们更容易使用Spring。 2、相关依赖关系 Spring IOC/AOP > Spring > Spring Boot > Spring Cloud 3、 SpringBoot工作原…

R语言,数据类型转换

原文链接&#xff1a;R语言技能 | 不同数据类型的转换 本期教程 写在前面 今天是4月份的第一天&#xff0c;再过2天后再一次迎来清明小假期。木鸡大家是否正常放假呢&#xff1f; 我们在使用R语言做数据分析时&#xff0c;会一直对数据进行不同类型的转换&#xff0c;有时候…

IP地址与子网掩码

1 IP地址 1.1 IPv4与IPv6 1.2 IPv4地址详解 IPv4地址分4段&#xff0c;每段8位&#xff0c;共32位二进制数组成。 1.2.1 地址分类 这32位又被分为网络号和主机号两部分&#xff0c;根据网络号占用位数的不同&#xff0c;又可分为以下几类&#xff1a; A类地址&#xff1a;…

Higress 基于自定义插件访问 Redis

作者&#xff1a;钰诚 简介 基于 wasm 机制&#xff0c;Higress 提供了优秀的可扩展性&#xff0c;用户可以基于 Go/C/Rust 编写 wasm 插件&#xff0c;自定义请求处理逻辑&#xff0c;满足用户的个性化需求&#xff0c;目前插件已经支持 redis 调用&#xff0c;使得用户能够…

Windows提权—数据库提权-mysql提权mssql提权Oracle数据库提权

目录 Windows 提权—数据库提权一、mysql提权1.1 udf提权1.1.2 操作方法一 、MSF自动化--UDF提权--漏洞利用1.1.3 操作方法二、 手工导出sqlmap中的dll1.1.4 操作方法三、 moon.php大马利用 1.2 mof提权1.3 启动项提权1.4 反弹shell 二、MSSQL提权MSSQL提权方法1.使用xp_cmdshe…

Ps:阈值

阈值 Threshold命令可将灰度图像或彩色图像转换为仅包含黑色和白色的二值图像。 Ps菜单&#xff1a;图像/调整/阈值 Adjustments/Threshold Ps菜单&#xff1a;图层/新建调整图层/阈值 New Adjustment Layer/Threshold 阈值命令通过设置一个特定的亮度阈值&#xff08;阈值色阶…

深度解析:Elasticsearch检索请求原理

在上一篇文章中&#xff0c;我们学习了 Elasticsearch 的写入流程&#xff0c;今天我们来学习一下 Elasticsearch 的读取流程&#xff0c;当一个检索请求到达 Elasticsearch 之后是如何进行检索的呢&#xff1f; 下面先说一下一个总的检索流程。 1、客户端发送请求到任意一个…

企业能耗数据分析有哪些优势?怎样进行分析?

随着互联网技术的发展&#xff0c;企业在运营中会出现大量的用能数据&#xff0c;但却做不了精准的用能数据分析&#xff0c;导致数据没有得到有效利用&#xff0c;以及产生能源浪费现象。 为什么企业用能分析总是难&#xff1f; 一、用能分析过程复杂 由于用能分析过于复杂…

正则表达式引擎库汇合

1.总览表格 一些正则表达式库的对比 index库名编程语言说明代码示例编译指令1Posix正则C语言是C标准库中用于编译POSIX风格的正则表达式库 posix-re.cgcc posix-re.c 2PCRE库C语言提供类似Perl语言的一个正则表达式引擎库。 一般系统上对应/usr/lib64/libpcre.so这个库文件&am…

读所罗门的密码笔记07_共生思想(中)

1. 在人工智能系统中建立信任 1.1. 人类的大脑容易被个人倾向、干扰因素和确认偏误所影响 1.2. 古莱说&#xff0c;然而&#xff0c;从不同的角度去思考事实、花更长时间来做决策的能力&#xff0c;可能会让人类拥有“密探”一般的智慧 1.3. 我们可以对决策进行批判性思考&a…

c语言----自定义类型---结构体(声明、重命名、对齐规则、传参、位段...详解)

目录 一、结构体类型的声明二、结构体的特殊声明三、结构体的重命名四、结构体的自引用五、结构体的内存对齐5.1对齐规则5.1.1练习 5.2为什么存在内存对齐?5.3 修改默认对齐数 六、结构体传参七、结构体实现位段7.1什么是位段7.2 位段的内存分配7.3 位段的跨平台问题7.4 位段的…

谷粒商城——通过接口幂等性防止重复提交订单

如果用户向后端服务提交多次相同订单的提交服务&#xff0c;那么后端应该只生成一条订单记录。 有一些操作天然是幂等的&#xff0c;如查询操作和删除操作等。 幂等性实现 1.token机制&#xff08;仅这个方法适用于订单的重复提交&#xff09; 后端先生成1个令牌将其记录在R…

智能停车场物联网远程监控解决方案

智能停车场物联网远程监控解决方案 智能停车场物联网远程监控解决方案是一种集成了现代物联网技术、大数据分析以及云计算等先进技术手段&#xff0c;对停车场进行全面智能化管理的综合系统。它通过实时感知、精准采集和高效传输各类停车数据&#xff0c;实现对停车场运营状态…

机器学习(四)

贝叶斯分类器与贝叶斯学习: 贝叶斯分类器:只要是一种生成式模型&#xff0c;并且使用到了贝叶斯公式 贝叶斯学习:一定在使用分布估计 贝叶斯分类器并不等于贝叶斯学习 极大似然估计: 先假设某种概率分布形式&#xff0c;再基于训练样例对参数进行估计 集成学习: 如何得到…