代码随想录阅读笔记-二叉树【平衡二叉树】

题目

给定一个二叉树,判断它是否是高度平衡的二叉树。

本题中,一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。

示例 1:

给定二叉树 [3,9,20,null,null,15,7]

110.平衡二叉树

返回 true 。

示例 2:

给定二叉树 [1,2,2,3,3,null,null,4,4]

110.平衡二叉树1

返回 false 。

思路 

很多人一看题目觉得和求最大深度很像,其实有很大区别。

这里强调一波概念:

  • 二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数。
  • 二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数。

但leetcode中强调的深度和高度很明显是按照节点来计算的,如图:

110.平衡二叉树2

关于根节点的深度究竟是1 还是 0,不同的地方有不一样的标准,leetcode的题目中都是以节点为一度,即根节点深度是1。但维基百科上定义用边为一度,即根节点的深度是0,我们暂时以leetcode为准。

因为求深度可以从上到下去查 所以需要前序遍历(中左右),而高度只能从下到上去查,所以只能后序遍历(左右中)

有的同学一定疑惑,为什么之前求最大深度中求的是二叉树的最大深度,也用的是后序遍历。

那是因为代码的逻辑其实是求的根节点的高度,而根节点的高度就是这棵树的最大深度,所以才可以使用后序遍历。

在求二叉树最大深度中,如果真正求取二叉树的最大深度,代码应该写成如下:(前序遍历)

class Solution {
public:
    int result;
    void getDepth(TreeNode* node, int depth) {
        result = depth > result ? depth : result; // 中

        if (node->left == NULL && node->right == NULL) return ;

        if (node->left) { // 左
            depth++;    // 深度+1
            getDepth(node->left, depth);
            depth--;    // 回溯,深度-1
        }
        if (node->right) { // 右
            depth++;    // 深度+1
            getDepth(node->right, depth);
            depth--;    // 回溯,深度-1
        }
        return ;
    }
    int maxDepth(TreeNode* root) {
        result = 0;
        if (root == NULL) return result;
        getDepth(root, 1);
        return result;
    }
};

可以看出使用了前序(中左右)的遍历顺序,这才是真正求深度的逻辑!

注意以上代码是为了把细节体现出来,简化一下代码如下:

class Solution {
public:
    int result;
    void getDepth(TreeNode* node, int depth) {
        result = depth > result ? depth : result; // 中
        if (node->left == NULL && node->right == NULL) return ;
        if (node->left) { // 左
            getDepth(node->left, depth + 1);
        }
        if (node->right) { // 右
            getDepth(node->right, depth + 1);
        }
        return ;
    }
    int maxDepth(TreeNode* root) {
        result = 0;
        if (root == 0) return result;
        getDepth(root, 1);
        return result;
    }
};

本题思路

递归

此时大家应该明白了既然要求比较高度,必然是要后序遍历。

递归三步曲分析:

1、明确递归函数的参数和返回值

参数:当前传入节点。 返回值:以当前传入节点为根节点的树的高度。

那么如何标记左右子树是否差值大于1呢?

如果当前传入节点为根节点的二叉树已经不是二叉平衡树了,还返回高度的话就没有意义了。

所以如果已经不是二叉平衡树了,可以返回-1 来标记已经不符合平衡树的规则了。

// -1 表示已经不是平衡二叉树了,否则返回值是以该节点为根节点树的高度
int getHeight(TreeNode* node)

2、明确终止条件

递归的过程中依然是遇到空节点了为终止,返回0,表示当前节点为根节点的树高度为0

if (node == NULL) {
    return 0;
}

3、明确单层递归的逻辑

如何判断以当前传入节点为根节点的二叉树是否是平衡二叉树呢?当然是其左子树高度和其右子树高度的差值。分别求出其左右子树的高度,然后如果差值小于等于1,则返回当前二叉树的高度,否则返回-1,表示已经不是二叉平衡树了。

int leftHeight = getHeight(node->left); // 左
if (leftHeight == -1) return -1;
int rightHeight = getHeight(node->right); // 右
if (rightHeight == -1) return -1;

int result;
if (abs(leftHeight - rightHeight) > 1) {  // 中
    result = -1;
} else {
    result = 1 + max(leftHeight, rightHeight); // 以当前节点为根节点的树的最大高度
}

return result;

代码精简之后如下:

int leftHeight = getHeight(node->left);
if (leftHeight == -1) return -1;
int rightHeight = getHeight(node->right);
if (rightHeight == -1) return -1;
return abs(leftHeight - rightHeight) > 1 ? -1 : 1 + max(leftHeight, rightHeight);

此时递归的函数就已经写出来了,这个递归的函数传入节点指针,返回以该节点为根节点的二叉树的高度,如果不是二叉平衡树,则返回-1。

最后本题整体递归代码如下:

class Solution {
public:
    // 返回以该节点为根节点的二叉树的高度,如果不是平衡二叉树了则返回-1
    int getHeight(TreeNode* node) {
        if (node == NULL) {
            return 0;
        }
        int leftHeight = getHeight(node->left);
        if (leftHeight == -1) return -1;
        int rightHeight = getHeight(node->right);
        if (rightHeight == -1) return -1;
        return abs(leftHeight - rightHeight) > 1 ? -1 : 1 + max(leftHeight, rightHeight);
    }
    bool isBalanced(TreeNode* root) {
        return getHeight(root) == -1 ? false : true;
    }
};

迭代

在求二叉树的最大深度中我们可以使用层序遍历来求深度,但是就不能直接用层序遍历来求高度了,这就体现出求高度和求深度的不同。

本题的迭代方式可以先定义一个函数,专门用来求高度。

这个函数通过栈模拟的后序遍历找每一个节点的高度(其实是通过求传入节点为根节点的最大深度来求的高度)

代码如下:

// cur节点的最大深度,就是cur的高度
int getDepth(TreeNode* cur) {
    stack<TreeNode*> st;
    if (cur != NULL) st.push(cur);
    int depth = 0; // 记录深度
    int result = 0;
    while (!st.empty()) {
        TreeNode* node = st.top();
        if (node != NULL) {
            st.pop();
            st.push(node);                          // 中
            st.push(NULL);
            depth++;
            if (node->right) st.push(node->right);  // 右
            if (node->left) st.push(node->left);    // 左

        } else {
            st.pop();
            node = st.top();
            st.pop();
            depth--;
        }
        result = result > depth ? result : depth;
    }
    return result;
}

然后再用栈来模拟后序遍历,遍历每一个节点的时候,再去判断左右孩子的高度是否符合,代码如下:

bool isBalanced(TreeNode* root) {
    stack<TreeNode*> st;
    if (root == NULL) return true;
    st.push(root);
    while (!st.empty()) {
        TreeNode* node = st.top();                       // 中
        st.pop();
        if (abs(getDepth(node->left) - getDepth(node->right)) > 1) { // 判断左右孩子高度是否符合
            return false;
        }
        if (node->right) st.push(node->right);           // 右(空节点不入栈)
        if (node->left) st.push(node->left);             // 左(空节点不入栈)
    }
    return true;
}

整体代码如下:

class Solution {
private:
    int getDepth(TreeNode* cur) {
        stack<TreeNode*> st;
        if (cur != NULL) st.push(cur);
        int depth = 0; // 记录深度
        int result = 0;
        while (!st.empty()) {
            TreeNode* node = st.top();
            if (node != NULL) {
                st.pop();
                st.push(node);                          // 中
                st.push(NULL);
                depth++;
                if (node->right) st.push(node->right);  // 右
                if (node->left) st.push(node->left);    // 左

            } else {
                st.pop();
                node = st.top();
                st.pop();
                depth--;
            }
            result = result > depth ? result : depth;
        }
        return result;
    }

public:
    bool isBalanced(TreeNode* root) {
        stack<TreeNode*> st;
        if (root == NULL) return true;
        st.push(root);
        while (!st.empty()) {
            TreeNode* node = st.top();                       // 中
            st.pop();
            if (abs(getDepth(node->left) - getDepth(node->right)) > 1) {
                return false;
            }
            if (node->right) st.push(node->right);           // 右(空节点不入栈)
            if (node->left) st.push(node->left);             // 左(空节点不入栈)
        }
        return true;
    }
};

当然此题用迭代法,其实效率很低,因为没有很好的模拟回溯的过程,所以迭代法有很多重复的计算。

虽然理论上所有的递归都可以用迭代来实现,但是有的场景难度可能比较大。

例如:都知道回溯法其实就是递归,但是很少人用迭代的方式去实现回溯算法!

因为对于回溯算法已经是非常复杂的递归了,如果再用迭代的话,就是自己给自己找麻烦,效率也并不一定高。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/507593.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Entity Framework】EF中的增删改查

【Entity Framework】EF中的增删改查 文章目录 【Entity Framework】EF中的增删改查一、概述二、DbContext数据上下文三、EntityState五个状态值四、EF添加数据4.1 EF Add方式4.2 EF 通过改变对象的状态为 Added4.3 调用方sql4.4 调用存储过程 五、EF修改数据5.1 不查询数据库&…

【SpringCloud】一文详谈Nacos

&#x1f3e1;浩泽学编程&#xff1a;个人主页 &#x1f525; 推荐专栏&#xff1a;《深入浅出SpringBoot》《java对AI的调用开发》 《RabbitMQ》《Spring》《SpringMVC》《项目实战》 &#x1f6f8;学无止境&#xff0c;不骄不躁&#xff0c;知行合一 文章目录 …

陀螺仪传感器,IMU和加速度计的产品和选型

爱普生陀螺仪传感器是一种角速度传感器&#xff0c;作为一种石英电子式陀螺仪芯片&#xff0c;具有温度特性好、功耗低、成本低、稳定性好等特点。目前EPSON主力单轴陀螺仪传感器型号为XV7001BB、XV7011BB、XV7021BB和XV7181BB。针对扫地机器人传感器模组等领域的需要&#xff…

享道出行:容器弹性技术驱动下的智慧出行稳定性实践

作者&#xff1a;郑嘉扬、何杉 前言 享道出行是一家专注于出行服务的专业品牌&#xff0c;是上汽集团实现汽车产业“新四化”&#xff08;即“电动化、智能网联化、共享化、国际化”&#xff09;的重要组成部分。作为上汽集团移动出行战略品牌&#xff0c;享道出行充分利用全…

4、jvm基础知识(四)

有哪些常见的垃圾回收算法&#xff1f; ⚫1960年John McCarthy发布了第一个GC算法&#xff1a;标记-清除算法。 ⚫1963年Marvin L. Minsky 发布了复制算法。 本质上后续所有的垃圾回收算法&#xff0c;都是在上述两种算法的基础上优化而来。 垃圾回收算法-标记清除算法 标记清…

“星际畅聊”来了!电子开启光通信,量子技术领航远程快速通讯

科学家们最近通过使用电脉冲将磁信息成功转换为偏振光信号&#xff0c;开启了一项革命性的量子技术。这一进展预示着未来包括地球与火星间长距离星际光通信在内的通信方式将发生翻天覆地的变化。 这项研究成果于3月27日在《自然》杂志上发表。研究聚焦于自旋电子学领域&#xf…

Gerrit学习

安装Gerrit 以Ubuntu 20.04为例&#xff0c;安装Gerrit容器2.15版本 docker-compose.yml version: 3 services:gerrit:image: gerritcodereview/gerrit:2.15ports:- 8080:8080- 29418:29418volumes:- ./review_site:/var/gerrit/review_siteenvironment:- CANONICAL_WEB_URL…

算法——距离计算

距离计算常用的算法包括欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、余弦相似度等。这些算法在数据挖掘、机器学习和模式识别等领域中被广泛应用。 1.欧氏距离 欧式距离也称欧几里得距离&#xff0c;是最常见的距离度量&#xff0c;衡量的是多维空间中两个点之间的…

Docker容器、Serverless与微服务:腾讯云云原生架构技术实践案例集解析

前言 随着云原生技术的飞速发展&#xff0c;容器化和函数计算正成为企业和开发者关注的焦点。在这一潮流中&#xff0c;腾讯云凭借其卓越的技术实力和深厚的行业积累&#xff0c;发布了《2023腾讯云容器和函数计算技术实践精选集》&#xff0c;为我们提供了一份深入探索云原生…

【编译分析】MSVC编译器函数修饰的返回值问题

在阅读一篇关于函数重载的文章时&#xff0c;作者提到了MSVC进行函数修饰的结果比较gcc更加复杂。 通过查阅GPT发现可以使用vs提供的dumpbin工具查看编译之后的汇编程序相关信息&#xff0c;可以通过下面这条指令进行查看&#xff1a; dumpbin /all test.exe在结果中查看可以找…

[网鼎杯 2020 朱雀组]Nmap1

打开题目 在源代码中看到了提示 先随便输入127.0.0.1 那我们试试输入 127.0.0.1 | ls 可以看到 | 被转义符号\所转义 那我们输入 127.0.0.1 /| ls 得到三条反斜线 我们猜测&#xff0c;我们输入的东西是被escapeshellarg和escapeshellcmd处理过后的结果 我们输入的东西必须…

干懵过Intel、AMD的外星科技,又要再次降临了

2020年苹果 M1 芯片的横空出世&#xff0c;不光盘活了自家的Mac 产品&#xff0c;也让大家意识到 ARM 架构也能发挥出恐怖的实力。 为了涵盖各个定位&#xff0c;随后又是 M1 Pro、M1 Max &#xff0c;最终还诞生了完全体 - M1 Ultra 。 两块 M1 Max 粘一起的规模带来了怪兽级…

skywalking idea中启动调试报错Output path is shared between the same module error

报错信息 简单描述&#xff1a;就是多个moudle一样用了一样的输出路径&#xff0c;这样容易造成冲突 Output path is shared between the same module error 参考&#xff1a;scala - Output path is shared between the same module error - Stack Overflow 解决方法&…

string容器以及vector容器的一些操作(常用的,不全)

目录 string 1.string的一些创建 2.string 的读入和输出&#xff1a; 3.string的一些操作 4.彻底清空string 容器的函数 vector 1.vector的一些创建&#xff1a; 2.vector的一些操作&#xff1a; 3.vector的彻底清空并释放内存&#xff1a; 参考&#xff1a;【C】如何…

【JavaWeb】Day31.SpringBootWeb请求响应——分层解耦(一)

分层解耦 1.三层架构 1.1 介绍 在我们进行程序设计以及程序开发时&#xff0c;尽可能让每一个接口、类、方法的职责更单一些&#xff08;单一职责原则&#xff09;。 单一职责原则&#xff1a;一个类或一个方法&#xff0c;就只做一件事情&#xff0c;只管一块功能。 这样就…

全网最全解析!Spring与非Spring环境下获取动态代理对象的原始目标对象

文章目录 前言在Spring AOP中获取动态代理对象的目标对象前置知识---SpringBoot默认是JDK动态代理还是Cglib动态代理&#xff1f;SpringBoot 2.x 版本分析Spring5 版本分析SpringBoot 1.x 版本分析SpringBoot 2.x 为何默认使用 Cglib 前置准备--工程准备1、自己写工具类获取--利…

中国力量:NeurIPS报告折射中国人工智能研究的惊人崛起

会议之眼 快讯 近年来&#xff0c;人工智能技术的发展和应用在全球范围内引起了广泛关注。2024年3月27日&#xff0c;美国保尔森基金会旗下的麦克罗波洛智库&#xff08;MacroPolo&#xff09;发布的《全球人工智能人才追踪调查报告 2.0》为我们揭示了这一领域的一个重要趋势&…

大模型 智能体 智能玩具 智能音箱 构建教程 wukong-robot

视频演示 10:27 一、背景 继上文《ChatGPT+小爱音响能擦出什么火花?》可以看出大伙对AI+硬件的结合十分感兴趣,但上文是针对市场智能音响的AI植入,底层是通过轮询拦截,算是hack兼容,虽然官方有提供开发者接口,也免不了有许多局限性(比如得通过特定指令唤醒),不利于我…

vite vue3 import.meta.glob动态路由

在Vite中使用Vue 3&#xff0c;你可以使用import.meta.glob来导入目录下的多个Vue组件&#xff0c;并自动生成路由。以下是一个简单的例子&#xff1a; router/index.js // router/index.js import { createRouter, createWebHistory } from vue-router;// 自动导入views目录下…

【算法】01背包问题(代码+详解+练习题)

题目&#xff1a; 有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。 第 i 件物品的体积是 vi&#xff0c;价值是 wi。 求解将哪些物品装入背包&#xff0c;可使这些物品的总体积不超过背包容量&#xff0c;且总价值最大。 输出最大价值。 输入格式 第一行两个整…