【信号去噪】基于马氏距离和EDF统计(IEE-TSP)的基于小波的多元信号去噪方法研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章


💥1 概述

文献来源:

 摘要:
本文提出了一种多变量信号去噪方法,该方法采用了一种新颖的基于多变量适应度检验 (GoF) 的方法,该方法在离散小波变换 (DWT) 获得的多个数据尺度上应用。在所提出的多变量GoF测试中,我们首先利用平方马氏距离 (MD) 度量将输入的多变量数据从 M 维空间 R M 转换为正实数的单维空间 R + ,即 R M → R + ,其中 M > 1。由于MD度量的性质,R + 中的转换数据遵循着独特的分布。这使得我们能够应用基于经验分布函数 (EDF) 的统计量来进行GoF测试,从而定义一个多元正态性测试。我们进一步提出在从离散小波变换获得的多个输入数据尺度上局部应用上述测试,从而得到一个多变量信号去噪框架。在所提出的方法中,参考累积分布函数 (CDF) 被定义为多变量高斯随机过程的二次转换。因此,所提出的方法检查一组DWT系数是否属于多元参考分布,将属于参考分布的系数丢弃。我们通过对合成和真实世界数据集进行广泛模拟实验,证明了我们提出的方法的有效性。

原文摘要:

Abstract:

A multivariate signal denoising method is proposed which employs a novel multivariate goodness of fit (GoF) test that is applied at multiple data scales obtained from discrete wavelet transform (DWT). In the proposed multivariate GoF test, we first utilize squared Mahalanobis distance (MD) measure to transform input multivariate data residing in M-dimensional space R M to a single-dimensional space of positive real numbers R + , i.e., R M → R + , where M > 1. Owing to the properties of the MD measure, the transformed data in R + follows a distinct distribution. That enables us to apply the GoF test using statistic based on empirical distribution function (EDF) on the resulting data in order to define a test for multivariate normality. We further propose to apply the above test locally on multiple input data scales obtained from discrete wavelet transform, resulting in a multivariate signal denoising framework. Within the proposed method, the reference cumulative distribution function (CDF) is defined as a quadratic transformation of multivariate Gaussian random process. Consequently, the proposed method checks whether a set of DWT coefficients belong to multivariate reference distribution or not; the coefficients belonging to the reference distribution are discarded. The effectiveness of our proposed method is demonstrated by performing extensive simulations on both synthetic and real world datasets.

📚2 运行结果

 

其他情况就不一一展示。 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]K. Naveed and N. u. Rehman, "Wavelet Based Multivariate Signal Denoising Using Mahalanobis Distance and EDF Statistics," in IEEE Transactions on Signal Processing, vol. 68, pp. 5997-6010, 2020, doi: 10.1109/TSP.2020.3029659.

🌈4 Matlab代码、数据、文章

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/50756.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据可视化(2)

1.柱状图 #柱状图 #bar(x,height,width,*,aligncenter,**kwargs) #height柱子的高度,即y轴上的数据 #width数组的宽度,默认值0.8 #*表示后面的参数为匿名关键字,必须传入参数 #kwargs关键字参数x[1,2,3,4,5] height[random.randint(10,100)f…

【学习笔记】视频检测方法调研

目录 1 引言2 方法2.1 视频目标跟踪2.1.1 生成式模型方法2.1.2 判别式模型方法2.1.2.1 基于相关滤波跟踪2.1.2.2 基于深度学习跟踪 2.2 视频异常检测2.2.1 基于重构方法2.2.2 基于预测方法2.2.3 基于分类方法2.2.4 基于回归方法 2.3 深度伪造人脸视频检测2.3.1 基于RNN时空融合…

WIZnet W6100-EVB-Pico DHCP 配置教程(三)

前言 在上一章节中我们讲了网络信息配置,那些网络信息的配置都是用户手动的去配置的,为了能跟电脑处于同一网段,且电脑能成功ping通板子,我们不仅要注意子网掩码,对于IP地址主机位和网络位的划分,而且还要注…

【LeetCode】二叉树的前序,中序,后序遍历

此题用递归做比较容易&#xff0c;然后根据前中后的遍历特点&#xff1a; 前序是根左右&#xff0c; 中序是左根右&#xff0c; 后序是左右根。 前序遍历&#xff1a;做题入口 class Solution {public List<Integer> preorderTraversal(TreeNode root) {List<Integer…

求分享如何批量压缩视频的容量的方法

视频内存过大&#xff0c;不但特别占内存&#xff0c;而且还会使手机电脑出现卡顿的现象&#xff0c;除此之外&#xff0c;如果我们想发送这些视频文件可能还会因为内存太大无法发送。因此&#xff0c;我们可以批量地压缩视频文件的内存大小&#xff0c;今天小编要来分享一招&a…

VSCode配置之C++ SQLite3极简配置方案

背景 最近在学习《深入应用C11: 代码优化与工程级应用》&#xff0c;其中第13章说到SQLite库&#xff0c;查询网上诸多教程&#xff0c;发现比较容易出现bug且配置较为麻烦&#xff0c;故记录此次简化版方案&#xff0c;以供参考。 软件环境 SQLite 3.42.0 版本&#xff08;仅…

解读分布式锁(redis实现方案)

1.导读 分布式锁是一种用于分布式系统中的并发控制机制&#xff0c;它用于确保在多个节点或多个进程之间的并发操作中&#xff0c;某些关键资源或代码块只能被一个节点或进程同时访问。分布式锁的目的是避免多个节点同时修改共享资源而导致的数据不一致或冲突的问题。通俗的来…

【MySQL】索引与B+树

【MySQL】索引与B树 索引概念前导硬件软件方面 索引的理解单个page多个page引入B树B树的特征为什么B树做索引优于其他数据结构&#xff1f;聚簇索引与非聚簇索引辅助索引 索引的创建主键索引的创建和查看唯一键索引的创建和查看普通索引的创建和查看复合索引全文索引索引的其他…

【数据集】3小时尺度降水数据集-MSWEPV2

1 MSWEP V2 precipitation product 官网-MSWEP V2降水产品 参考

【Python数据分析】Python基本数据类型

&#x1f389;欢迎来到Python专栏~Python基本数据类型 ☆* o(≧▽≦)o *☆嗨~我是小夏与酒&#x1f379; ✨博客主页&#xff1a;小夏与酒的博客 &#x1f388;该系列文章专栏&#xff1a;Python学习专栏 文章作者技术和水平有限&#xff0c;如果文中出现错误&#xff0c;希望…

基于WSL2、Ubuntu和VS Code的CUDA平台运行C语言程序

一、CUDA程序执行方法 执行步骤为&#xff1a; 安装Visual Studio Code。在Visual Studio Code中安装插件WSL与电脑的WSL2进行连接。点击左下角&#xff0c;然后再选择连接到WSL。 在WSL中创建以 .cu 为后缀的文件。 rootDESKTOP-HR6VO5J:~# mkdir CUDA /…

Flutter ios真机调试连接断开后应用闪退

使用ios真机调试的时候&#xff0c;能正常打开应用&#xff0c;但是当数据线断开连接的时候&#xff0c;应用就会关闭&#xff0c;重新打开就会闪退。 原因是flutter默认在开发过程中使用debug模式编译 只需要将debug选择为release 重新编译就行。

C++代码格式化工具clang-format详细介绍

文章目录 clang-format思考代码风格指南生成您的配置运行 clang-format禁用一段代码的格式设置clang-format的设置预览 clang-format 我曾在许多编程团队工作过&#xff0c;这些团队名义上都有“编程风格指南”。该指南经常被写下来并放置在开发人员很少查看的地方。几乎在每种…

Shell 排序法 - 改良的插入排序

说明 插入排序法由未排序的后半部前端取出一个值&#xff0c;插入已排序前半部的适当位置&#xff0c;概念简单但速度不快。 排序要加快的基本原则之一&#xff0c;是让后一次的排序进行时&#xff0c;尽量利用前一次排序后的结果&#xff0c;以加快排序的速度&#xff0c;Shel…

【软件测试】基于博客系统的自动化测试

目录 1.我的博客系统链接 2.使用selenium对博客系统进行自动化测试 1.引入依赖 2.创建公共类 3.创建测试套件类 4.测试登陆界面 5. 测试博客列表页 6.测试写博客页面 7.测试删除博客 8.最终运行结果 1.我的博客系统链接 用户登录 2.使用selenium对博客系统进行自动…

Git时间:版本控制工具进阶

Git时间&#xff1a;版本控制工具进阶 忽略文件 Git允许用户将指定的文件或目录排除在版本控制之外&#xff0c;它会检查代码仓库的目录下是否存在一个名为.gitignore的文件&#xff0c;如果存在&#xff0c;就去一行行读取这个文件中的内容&#xff0c;并把每一行指定的文件…

【算法和数据结构】257、LeetCode二叉树的所有路径

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析&#xff1a;首先看这道题的输出结果&#xff0c;是前序遍历。然后需要找到从根节点到叶子节点的所有路径&#xff…

C++笔记之vector的底层实现和扩容机制

C笔记之vector的底层实现和扩容机制 1. 先申请内存空间&#xff0c;内存空间容量变成原来的n倍(一般是原来的两倍) 2. 将原本容器中的数据拷贝到新的内存空间中 3. 释放原来的内存空间 4. 将数组指针指向新容器的内存空间 code review! 文章目录 C笔记之vector的底层实现和扩…

秒级体验本地调试远程 k8s 中的服务

点击上方蓝色字体&#xff0c;选择“设为星标” 回复”云原生“获取基础架构实践 背景 在这个以k8s为云os的时代&#xff0c;程序员在日常的开发过程中&#xff0c;肯定会遇到各种问题&#xff0c;比如&#xff1a;本地开发完&#xff0c;需要部署到远程k8s集群&#xff0c;本地…

LLaMA模型论文《LLaMA: Open and Efficient Foundation Language Models》阅读笔记

文章目录 1. 简介2.方法2.1 预训练数据2.2 网络架构2.3 优化器2.4 高效的实现 3.论文其余部分4. 参考资料 1. 简介 LLaMA是meta在2023年2月开源的大模型&#xff0c;在这之后&#xff0c;很多开源模型都是基于LLaMA的&#xff0c;比如斯坦福大学的羊驼模型。 LLaMA的重点是比…