黑马点评项目笔记 II

基于Stream的消息队列

stream是一种数据类型,可以实现一个功能非常完善的消息队列

key:队列名称
nomkstream:如果队列不存在是否自动创建,默认创建
maxlen/minid:设置消息队列的最大消息数量
*|ID 唯一id:时间戳-递增数字
field value:消息体:键值对

 XREAD 命令特点:消息可回溯,一个消息可以被多个消费者读取,可以阻塞读取,有消息漏读风险

消费者组

 

 特点:小费可回溯,消费者争抢消息,加快消费速度,可以阻塞读取,没有漏读风险,消息确认机制。

实现:

创建一个消费者组

XGROUP CREATE stream.orders g1 0 MKSTREAM //创建队列和消费者组

 最终版秒杀代码

@Slf4j
@Service
public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderService {

    @Resource
    private ISeckillVoucherService seckillVoucherService;

    @Resource
    private RedisIdWorker redisIdWorker;
    @Resource
    private RedissonClient redissonClient;
    @Resource
    private StringRedisTemplate stringRedisTemplate;

    private static final DefaultRedisScript<Long> SECKILL_SCRIPT;

    static {
        SECKILL_SCRIPT = new DefaultRedisScript<>();
        SECKILL_SCRIPT.setLocation(new ClassPathResource("seckill.lua"));
        SECKILL_SCRIPT.setResultType(Long.class);
    }


    private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();

    @PostConstruct
    private void init() {
        SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
    }

    private class VoucherOrderHandler implements Runnable {

        @Override
        public void run() {
            while (true) {
                try {
                    // 1.获取消息队列中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 >
                    List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
                            Consumer.from("g1", "c1"), // 组名和消费者名
                            StreamReadOptions.empty().count(1).block(Duration.ofSeconds(2)), //创建空的,读一个,阻塞两秒钟
                            StreamOffset.create("stream.orders", ReadOffset.lastConsumed()) // 消息队列的名字和读取标识
                    );
                    // 2.判断订单信息是否为空
                    if (list == null || list.isEmpty()) {
                        // 如果为null,说明没有消息,继续下一次循环
                        continue;
                    }
                    // 解析数据
                    MapRecord<String, Object, Object> record = list.get(0);
                    Map<Object, Object> value = record.getValue();
                    VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
                    // 3.创建订单
                    createVoucherOrder(voucherOrder);
                    // 4.确认消息 XACK
                    stringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());
                } catch (Exception e) {
                    log.error("处理订单异常", e);
                    handlePendingList();
                }
            }
        }

        private void handlePendingList() {
            while (true) {
                try {
                    // 1.获取pending-list中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 0
                    List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
                            Consumer.from("g1", "c1"),
                            StreamReadOptions.empty().count(1),
                            StreamOffset.create("stream.orders", ReadOffset.from("0"))
                    );
                    // 2.判断订单信息是否为空
                    if (list == null || list.isEmpty()) {
                        // 如果为null,说明没有异常消息,结束循环
                        break;
                    }
                    // 解析数据
                    MapRecord<String, Object, Object> record = list.get(0);
                    Map<Object, Object> value = record.getValue();
                    VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
                    // 3.创建订单
                    createVoucherOrder(voucherOrder);
                    // 4.确认消息 XACK
                    stringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());
                } catch (Exception e) {
                    log.error("处理订单异常", e);
                }
            }
        }
    }
 private void createVoucherOrder(VoucherOrder voucherOrder) {
        Long userId = voucherOrder.getUserId();
        Long voucherId = voucherOrder.getVoucherId();
        // 创建锁对象
        RLock redisLock = redissonClient.getLock("lock:order:" + userId);
        // 尝试获取锁
        boolean isLock = redisLock.tryLock();
        // 判断
        if (!isLock) {
            // 获取锁失败,直接返回失败或者重试
            log.error("不允许重复下单!");
            return;
        }

        try {
            // 5.1.查询订单
            int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
            // 5.2.判断是否存在
            if (count > 0) {
                // 用户已经购买过了
                log.error("不允许重复下单!");
                return;
            }

            // 6.扣减库存
            boolean success = seckillVoucherService.update()
                    .setSql("stock = stock - 1") // set stock = stock - 1
                    .eq("voucher_id", voucherId).gt("stock", 0) // where id = ? and stock > 0
                    .update();
            if (!success) {
                // 扣减失败
                log.error("库存不足!");
                return;
            }

            // 7.创建订单
            save(voucherOrder);
        } finally {
            // 释放锁
            redisLock.unlock();
        }
    }

    @Override
    public Result seckillVoucher(Long voucherId) {
        // 获取用户
        Long userId = UserHolder.getUser().getId();
        // 获取订单id
        long orderId = redisIdWorker.nextId("order");
        // 1.执行lua脚本
        Long result = stringRedisTemplate.execute(
                SECKILL_SCRIPT,
                Collections.emptyList(),
                voucherId.toString(), userId.toString(), String.valueOf(orderId)
        );
        int r = result.intValue();
        // 2.判断结果是否为0
        if (r != 0) {
            // 2.1.不为0 ,代表没有购买资格
            return Result.fail(r == 1 ? "库存不足" : "不能重复下单");
        }
        // 3.返回订单id
        return Result.ok(orderId);
    }
}
-- 1.参数列表
-- 1.1.优惠券id
local voucherId = ARGV[1]
-- 1.2.用户id
local userId = ARGV[2]
-- 1.3.订单id
local orderId = ARGV[3]

-- 2.数据key
-- 2.1.库存key
local stockKey = 'seckill:stock:' .. voucherId
-- 2.2.订单key
local orderKey = 'seckill:order:' .. voucherId

-- 3.脚本业务
-- 3.1.判断库存是否充足 get stockKey
if(tonumber(redis.call('get', stockKey)) <= 0) then
    -- 3.2.库存不足,返回1
    return 1
end
-- 3.2.判断用户是否下单 SISMEMBER orderKey userId
if(redis.call('sismember', orderKey, userId) == 1) then
    -- 3.3.存在,说明是重复下单,返回2
    return 2
end
-- 3.4.扣库存 incrby stockKey -1
redis.call('incrby', stockKey, -1)
-- 3.5.下单(保存用户)sadd orderKey userId
redis.call('sadd', orderKey, userId)
-- 3.6.发送消息到队列中, XADD stream.orders * k1 v1 k2 v2 ...
redis.call('xadd', 'stream.orders', '*', 'userId', userId, 'voucherId', voucherId, 'id', orderId)
return 0

探店达人

完善点赞功能:同一个用户只能点赞一次再点就取消,如果点赞会高亮

  

@Service
public class BlogServiceImpl extends ServiceImpl<BlogMapper, Blog> implements IBlogService {

    @Resource
    private IUserService userService;

    @Resource
    private StringRedisTemplate stringRedisTemplate;

    @Resource
    private IFollowService followService;

    @Override
    public Result queryHotBlog(Integer current) {
        // 根据用户查询
        Page<Blog> page = query()
                .orderByDesc("liked")
                .page(new Page<>(current, SystemConstants.MAX_PAGE_SIZE));
        // 获取当前页数据
        List<Blog> records = page.getRecords();
        // 查询用户
        records.forEach(blog -> {
            this.queryBlogUser(blog);
            this.isBlogLiked(blog);
        });
        return Result.ok(records);
    }

    @Override
    public Result queryBlogById(Long id) {
        // 1.查询blog
        Blog blog = getById(id);
        if (blog == null) {
            return Result.fail("笔记不存在!");
        }
        // 2.查询blog有关的用户
        queryBlogUser(blog);
        // 3.查询blog是否被点赞
        isBlogLiked(blog);
        return Result.ok(blog);
    }

    private void isBlogLiked(Blog blog) {
        // 1.获取登录用户
        UserDTO user = UserHolder.getUser();
        if (user == null) {
            // 用户未登录,无需查询是否点赞
            return;
        }
        Long userId = user.getId();
        // 2.判断当前登录用户是否已经点赞
        String key = "blog:liked:" + blog.getId();
        Double score = stringRedisTemplate.opsForZSet().score(key, userId.toString());
        blog.setIsLike(score != null);
    }

    @Override
    public Result likeBlog(Long id) {
        // 1.获取登录用户
        Long userId = UserHolder.getUser().getId();
        // 2.判断当前登录用户是否已经点赞
        String key = BLOG_LIKED_KEY + id;
        Double score = stringRedisTemplate.opsForZSet().score(key, userId.toString());
        if (score == null) {
            // 3.如果未点赞,可以点赞
            // 3.1.数据库点赞数 + 1
            boolean isSuccess = update().setSql("liked = liked + 1").eq("id", id).update();
            // 3.2.保存用户到Redis的set集合  zadd key value score
            if (isSuccess) {
                stringRedisTemplate.opsForZSet().add(key, userId.toString(), System.currentTimeMillis());
            }
        } else {
            // 4.如果已点赞,取消点赞
            // 4.1.数据库点赞数 -1
            boolean isSuccess = update().setSql("liked = liked - 1").eq("id", id).update();
            // 4.2.把用户从Redis的set集合移除
            if (isSuccess) {
                stringRedisTemplate.opsForZSet().remove(key, userId.toString());
            }
        }
        return Result.ok();
    }

    @Override
    public Result queryBlogLikes(Long id) {
        String key = BLOG_LIKED_KEY + id;
        // 1.查询top5的点赞用户 zrange key 0 4
        Set<String> top5 = stringRedisTemplate.opsForZSet().range(key, 0, 4);
        if (top5 == null || top5.isEmpty()) {
            return Result.ok(Collections.emptyList());
        }
        // 2.解析出其中的用户id
        List<Long> ids = top5.stream().map(Long::valueOf).collect(Collectors.toList());
        String idStr = StrUtil.join(",", ids);
        // 3.根据用户id查询用户 WHERE id IN ( 5 , 1 ) ORDER BY FIELD(id, 5, 1)
        // mybatis plus提供自定义查询
        List<UserDTO> userDTOS = userService.query()
                .in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list()
                .stream()
                .map(user -> BeanUtil.copyProperties(user, UserDTO.class))
                .collect(Collectors.toList());
        // 4.返回
        return Result.ok(userDTOS);
    }

    @Override
    public Result saveBlog(Blog blog) {
        // 1.获取登录用户
        UserDTO user = UserHolder.getUser();
        blog.setUserId(user.getId());
        // 2.保存探店笔记
        boolean isSuccess = save(blog);
        if(!isSuccess){
            return Result.fail("新增笔记失败!");
        }
        // 3.查询笔记作者的所有粉丝 select * from tb_follow where follow_user_id = ?
        List<Follow> follows = followService.query().eq("follow_user_id", user.getId()).list();
        // 4.推送笔记id给所有粉丝
        for (Follow follow : follows) {
            // 4.1.获取粉丝id
            Long userId = follow.getUserId();
            // 4.2.推送
            String key = FEED_KEY + userId;
            stringRedisTemplate.opsForZSet().add(key, blog.getId().toString(), System.currentTimeMillis());
        }
        // 5.返回id
        return Result.ok(blog.getId());
    }

    @Override
    public Result queryBlogOfFollow(Long max, Integer offset) {
        // 1.获取当前用户
        Long userId = UserHolder.getUser().getId();
        // 2.查询收件箱 ZREVRANGEBYSCORE key Max Min LIMIT offset count
        String key = FEED_KEY + userId;
        Set<ZSetOperations.TypedTuple<String>> typedTuples = stringRedisTemplate.opsForZSet()
                .reverseRangeByScoreWithScores(key, 0, max, offset, 2);
        // 3.非空判断
        if (typedTuples == null || typedTuples.isEmpty()) {
            return Result.ok();
        }
        // 4.解析数据:blogId、minTime(时间戳)、offset
        List<Long> ids = new ArrayList<>(typedTuples.size());
        long minTime = 0; // 2
        int os = 1; // 2
        for (ZSetOperations.TypedTuple<String> tuple : typedTuples) { // 5 4 4 2 2
            // 4.1.获取id
            ids.add(Long.valueOf(tuple.getValue()));
            // 4.2.获取分数(时间戳)
            long time = tuple.getScore().longValue();
            if(time == minTime){
                os++;
            }else{
                minTime = time;
                os = 1;
            }
        }

        // 5.根据id查询blog
        String idStr = StrUtil.join(",", ids);
        List<Blog> blogs = query().in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list();

        for (Blog blog : blogs) {
            // 5.1.查询blog有关的用户
            queryBlogUser(blog);
            // 5.2.查询blog是否被点赞
            isBlogLiked(blog);
        }

        // 6.封装并返回
        ScrollResult r = new ScrollResult();
        r.setList(blogs);
        r.setOffset(os);
        r.setMinTime(minTime);

        return Result.ok(r);
    }

    private void queryBlogUser(Blog blog) {
        Long userId = blog.getUserId();
        User user = userService.getById(userId);
        blog.setName(user.getNickName());
        blog.setIcon(user.getIcon());
    }
}

好友关注

共同关注:查交集(Set)

@Service
public class FollowServiceImpl extends ServiceImpl<FollowMapper, Follow> implements IFollowService {

    @Resource
    private StringRedisTemplate stringRedisTemplate;
    @Resource
    private IUserService userService;

    @Override
    public Result follow(Long followUserId, Boolean isFollow) {
        // 1.获取登录用户
        Long userId = UserHolder.getUser().getId();
        String key = "follows:" + userId;
        // 1.判断到底是关注还是取关
        if (isFollow) {
            // 2.关注,新增数据
            Follow follow = new Follow();
            follow.setUserId(userId);
            follow.setFollowUserId(followUserId);
            boolean isSuccess = save(follow);
            if (isSuccess) {
                // 把关注用户的id,放入redis的set集合 sadd userId followerUserId
                stringRedisTemplate.opsForSet().add(key, followUserId.toString());
            }
        } else {
            // 3.取关,删除 delete from tb_follow where user_id = ? and follow_user_id = ?
            boolean isSuccess = remove(new QueryWrapper<Follow>()
                    .eq("user_id", userId).eq("follow_user_id", followUserId));
            if (isSuccess) {
                // 把关注用户的id从Redis集合中移除
                stringRedisTemplate.opsForSet().remove(key, followUserId.toString());
            }
        }
        return Result.ok();
    }

    @Override
    public Result isFollow(Long followUserId) {
        // 1.获取登录用户
        Long userId = UserHolder.getUser().getId();
        // 2.查询是否关注 select count(*) from tb_follow where user_id = ? and follow_user_id = ?
        Integer count = query().eq("user_id", userId).eq("follow_user_id", followUserId).count();
        // 3.判断
        return Result.ok(count > 0);
    }

    @Override
    public Result followCommons(Long id) {
        // 1.获取当前用户
        Long userId = UserHolder.getUser().getId();
        String key = "follows:" + userId;
        // 2.求交集
        String key2 = "follows:" + id;
        Set<String> intersect = stringRedisTemplate.opsForSet().intersect(key, key2);
        if (intersect == null || intersect.isEmpty()) {
            // 无交集
            return Result.ok(Collections.emptyList());
        }
        // 3.解析id集合
        List<Long> ids = intersect.stream().map(Long::valueOf).collect(Collectors.toList());
        // 4.查询用户
        List<UserDTO> users = userService.listByIds(ids)
                .stream()
                .map(user -> BeanUtil.copyProperties(user, UserDTO.class))
                .collect(Collectors.toList());
        return Result.ok(users);
    }
}

关注推送

 

拉模式:读扩散:每次都要获取消息然后根据时间戳进行排序,延迟

推模式:写扩散:要把消息写给所有人,内存占用高

推拉结合模式:读写混合:

普通人发消息,由于粉丝比较少,所以直接推模式塞进去
大V发消息,首先要区分普通粉丝和活跃粉丝,对于普通粉丝采用拉模式,活跃粉丝推模式

本项目采用推模式!

List里面只能角标查询,而Sorted支持按照score值范围查询,支持滚动分页

 

推送到粉丝收件箱

@Override
    public Result saveBlog(Blog blog) {
        // 1.获取登录用户
        UserDTO user = UserHolder.getUser();
        blog.setUserId(user.getId());
        // 2.保存探店笔记
        boolean isSuccess = save(blog);
        if(!isSuccess){
            return Result.fail("新增笔记失败!");
        }
        // 3.查询笔记作者的所有粉丝 select * from tb_follow where follow_user_id = ?
        List<Follow> follows = followService.query().eq("follow_user_id", user.getId()).list();
        // 4.推送笔记id给所有粉丝
        for (Follow follow : follows) {
            // 4.1.获取粉丝id
            Long userId = follow.getUserId();
            // 4.2.推送
            String key = FEED_KEY + userId;
            stringRedisTemplate.opsForZSet().add(key, blog.getId().toString(), System.currentTimeMillis());
        }
        // 5.返回id
        return Result.ok(blog.getId());
    }

滚动分页 

滚动分页查询参数:
max:第一次查询时为当前时间戳 | 上一次查询的最小时间戳
min:0
offset:第一次直接0 | 在上一次的结果中,与最小值一样的元素的个数
count:3(查询条数)

@Data
public class ScrollResult {
    private List<?> list;
    private Long minTime;
    private Integer offset;
}
@Override
    public Result queryBlogOfFollow(Long max, Integer offset) {
        // 1.获取当前用户
        Long userId = UserHolder.getUser().getId();
        // 2.查询收件箱 ZREVRANGEBYSCORE key Max Min LIMIT offset count
        String key = FEED_KEY + userId;
        // 滚动分页查询
        Set<ZSetOperations.TypedTuple<String>> typedTuples = stringRedisTemplate.opsForZSet()
                .reverseRangeByScoreWithScores(key, 0, max, offset, 2);
        // 3.非空判断
        if (typedTuples == null || typedTuples.isEmpty()) {
            return Result.ok();
        }
        // 4.解析数据:blogId、minTime(时间戳)、offset
        List<Long> ids = new ArrayList<>(typedTuples.size());
        long minTime = 0; // 2
        // 判断重复
        int os = 1; // 2
        for (ZSetOperations.TypedTuple<String> tuple : typedTuples) { // 5 4 4 2 2
            // 4.1.获取id
            ids.add(Long.valueOf(tuple.getValue()));
            // 4.2.获取分数(时间戳)
            long time = tuple.getScore().longValue();
            if(time == minTime){
                os++;
            }else{
                minTime = time;
                os = 1;
            }
        }

        // 5.根据id查询blog 不能用listByids,要用orderby
        String idStr = StrUtil.join(",", ids);
        List<Blog> blogs = query().in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list();

        for (Blog blog : blogs) {
            // 5.1.查询blog有关的用户
            queryBlogUser(blog);
            // 5.2.查询blog是否被点赞
            isBlogLiked(blog);
        }

        // 6.封装并返回
        ScrollResult r = new ScrollResult();
        r.setList(blogs);
        r.setOffset(os);
        r.setMinTime(minTime);

        return Result.ok(r);
    }

附近商户

 导入店铺数据

 @Test
    void loadShopData() {
        // 1.查询店铺信息
        List<Shop> list = shopService.list();
        // 2.把店铺分组,按照typeId分组,typeId一致的放到一个集合
        Map<Long, List<Shop>> map = list.stream().collect(Collectors.groupingBy(Shop::getTypeId));
        // 3.分批完成写入Redis
        for (Map.Entry<Long, List<Shop>> entry : map.entrySet()) {
            // 3.1.获取类型id
            Long typeId = entry.getKey();
            String key = SHOP_GEO_KEY + typeId;
            // 3.2.获取同类型的店铺的集合
            List<Shop> value = entry.getValue();
            List<RedisGeoCommands.GeoLocation<String>> locations = new ArrayList<>(value.size());
            // 3.3.写入redis GEOADD key 经度 纬度 member
            for (Shop shop : value) {
                // stringRedisTemplate.opsForGeo().add(key, new Point(shop.getX(), shop.getY()), shop.getId().toString());
                locations.add(new RedisGeoCommands.GeoLocation<>(
                        shop.getId().toString(),
                        new Point(shop.getX(), shop.getY())
                ));
            }
            stringRedisTemplate.opsForGeo().add(key, locations);
        }
    }
    public Result queryShopByType(Integer typeId, Integer current, Double x, Double y) {
        // 1.判断是否需要根据坐标查询
        if (x == null || y == null) {
            // 不需要坐标查询,按数据库查询
            Page<Shop> page = query()
                    .eq("type_id", typeId)
                    .page(new Page<>(current, SystemConstants.DEFAULT_PAGE_SIZE));
            // 返回数据
            return Result.ok(page.getRecords());
        }

        // 2.计算分页参数
        int from = (current - 1) * SystemConstants.DEFAULT_PAGE_SIZE;
        int end = current * SystemConstants.DEFAULT_PAGE_SIZE;

        // 3.查询redis、按照距离排序、分页。结果:shopId、distance
        String key = SHOP_GEO_KEY + typeId;
        GeoResults<RedisGeoCommands.GeoLocation<String>> results = stringRedisTemplate.opsForGeo() // GEOSEARCH key BYLONLAT x y BYRADIUS 10 WITHDISTANCE
                .search(
                        key,
                        GeoReference.fromCoordinate(x, y),
                        new Distance(5000),
                        RedisGeoCommands.GeoSearchCommandArgs.newGeoSearchArgs().includeDistance().limit(end)
                );
        // 4.解析出id
        if (results == null) {
            return Result.ok(Collections.emptyList());
        }
        List<GeoResult<RedisGeoCommands.GeoLocation<String>>> list = results.getContent();
        if (list.size() <= from) {
            // 没有下一页了,结束
            return Result.ok(Collections.emptyList());
        }
        // 4.1.截取 from ~ end的部分
        List<Long> ids = new ArrayList<>(list.size());
        Map<String, Distance> distanceMap = new HashMap<>(list.size());
        list.stream().skip(from).forEach(result -> {
            // 4.2.获取店铺id
            String shopIdStr = result.getContent().getName();
            ids.add(Long.valueOf(shopIdStr));
            // 4.3.获取距离
            Distance distance = result.getDistance();
            distanceMap.put(shopIdStr, distance);
        });
        // 5.根据id查询Shop
        String idStr = StrUtil.join(",", ids);
        List<Shop> shops = query().in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list();
        for (Shop shop : shops) {
            shop.setDistance(distanceMap.get(shop.getId().toString()).getValue());
        }
        // 6.返回
        return Result.ok(shops);
    }
}

用户签到

位图BitMap:

 

 @Override
    public Result sign() {
        // 1.获取当前登录用户
        Long userId = UserHolder.getUser().getId();
        // 2.获取日期
        LocalDateTime now = LocalDateTime.now();
        // 3.拼接key
        String keySuffix = now.format(DateTimeFormatter.ofPattern(":yyyyMM"));
        String key = USER_SIGN_KEY + userId + keySuffix;
        // 4.获取今天是本月的第几天
        int dayOfMonth = now.getDayOfMonth();
        // 5.写入Redis SETBIT key offset 1
        stringRedisTemplate.opsForValue().setBit(key, dayOfMonth - 1, true);
        return Result.ok();
    }

签到统计

@Override
    public Result signCount() {
        // 1.获取当前登录用户
        Long userId = UserHolder.getUser().getId();
        // 2.获取日期
        LocalDateTime now = LocalDateTime.now();
        // 3.拼接key
        String keySuffix = now.format(DateTimeFormatter.ofPattern(":yyyyMM"));
        String key = USER_SIGN_KEY + userId + keySuffix;
        // 4.获取今天是本月的第几天
        int dayOfMonth = now.getDayOfMonth();
        // 5.获取本月截止今天为止的所有的签到记录,返回的是一个十进制的数字 BITFIELD sign:5:202203 GET u14 0
        List<Long> result = stringRedisTemplate.opsForValue().bitField(
                key,
                BitFieldSubCommands.create()
                        .get(BitFieldSubCommands.BitFieldType.unsigned(dayOfMonth)).valueAt(0)
        );
        if (result == null || result.isEmpty()) {
            // 没有任何签到结果
            return Result.ok(0);
        }
        Long num = result.get(0);
        if (num == null || num == 0) {
            return Result.ok(0);
        }
        // 6.循环遍历
        int count = 0;
        while (true) {
            // 6.1.让这个数字与1做与运算,得到数字的最后一个bit位  // 判断这个bit位是否为0
            if ((num & 1) == 0) {
                // 如果为0,说明未签到,结束
                break;
            }else {
                // 如果不为0,说明已签到,计数器+1
                count++;
            }
            // 把数字右移一位,抛弃最后一个bit位,继续下一个bit位
            num  >>>= 1;
        }
        return Result.ok(count);
    }

VU统计

 

@Test
    void testHyperLogLog() {
        String[] values = new String[1000];
        int j = 0;
        for (int i = 0; i < 1000000; i++) {
            j = i % 1000;
            values[j] = "user_" + i;
            if(j == 999){
                // 发送到Redis
                stringRedisTemplate.opsForHyperLogLog().add("hl2", values);
            }
        }
        // 统计数量
        Long count = stringRedisTemplate.opsForHyperLogLog().size("hl2");
        System.out.println("count = " + count);
    }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/504569.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Vue系列-el挂载

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>el:挂载点</title> </head> <body&g…

作业 二维数组-定位问题

图形相似度 描述 给出两幅相同大小的黑白图像&#xff08;用0-1矩阵&#xff09;表示&#xff0c;求它们的相似度。 说明&#xff1a;若两幅图像在相同位置上的像素点颜色相同&#xff0c;则称它们在该位置具有相同的像素点。 两幅图像的相似度定义为相同像素点数占总像素点数…

P87 4.1 C++ FOR 与Delphi FOR 的区别

输出x, sin(x), cos(x), tan(x)的值。已知X0&#xff0c;10&#xff0c; 20&#xff0c;180。 我用Delphi编写了程序&#xff1a; 第10行出现 给FOR 循环变量赋值i错误。 C中是可以的&#xff0c; 详见&#xff1a;delphi循环的一个小知识_assignment to for-loop variable…

安装JupyterLab的集成环境

Python集成环境安装 不要半途而废&#xff0c;不要作业太多就抛下你手中的笔&#xff0c;拿起你旁边的手机&#xff0c;你觉得这样很有意义吗&#xff1f;一个小时一道题都没做&#xff0c;盯着手机屏幕它能给你一个未来吗&#xff1f;少分心就能多做一道题&#xff0c;多学样本…

Java多线程:定位死锁

检测死锁可以使用jconsole工具&#xff0c;或使用jps定位进程id&#xff0c;再用jstack定位死锁 方案1&#xff1a; 1. 先用jps查看所有的java进程id 2. jstack 进程id定位死锁 3. 查看死锁结果 方案2:从jdk的安装路径中找到bin目录, 点击jconsole

Kafka入门到实战-第五弹

Kafka入门到实战 Kafka常见操作官网地址Kafka概述Kafka的基础操作更新计划 Kafka常见操作 官网地址 声明: 由于操作系统, 版本更新等原因, 文章所列内容不一定100%复现, 还要以官方信息为准 https://kafka.apache.org/Kafka概述 Apache Kafka 是一个开源的分布式事件流平台&…

1.5编写一个程序,输入梯形的上底,下底和高,输出梯形的面积。

1、编写一个程序,输入梯形的上底,下底和高,输出梯形的面积。 package com.kangning.web.controller.system;import java.util.Scanner;/*** 编写一个程序,输入梯形的上底,下底和高,输出梯形的面积。*/ public class CountArea {public static void main(String[] args) …

知乎:多云架构下大模型训练,如何保障存储稳定性?

知乎&#xff0c;中文互联网领域领先的问答社区和原创内容平台&#xff0c;2011 年 1 月正式上线&#xff0c;月活跃用户超过 1 亿。平台的搜索和推荐服务得益于先进的 AI 算法&#xff0c;数百名算法工程师基于数据平台和机器学习平台进行海量数据处理和算法训练任务。 为了提…

java入门学习Day01

本篇文章主要是学会如何使用IDEA&#xff0c;和运行第一个java文件。 java环境安装&#xff1a;Windows下Java环境配置教程_windows java环境配置-CSDN博客 IDEA安装&#xff1a;IDEA 2023.2.5 最新激活码,注册码&#xff08;亲测好用&#xff09; - 异常教程 以上两个链接…

函数栈帧的创建与销毁(最详细的一集)上

前言 1.我们在进行c语言代码编程的时候&#xff0c;常常会把独立的一个功能抽象为函数&#xff0c;利用函数去实现各种的功能&#xff0c;那么&#xff0c;函数是如何调用的&#xff1f;函数的返回值是怎么返回的&#xff1f;参数又是如何传参的&#xff1f;所有这些问题都会跟…

【NLP练习】Pytorch文本分类入门

Pytorch文本分类入门 &#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客 &#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制一、前期准备 1. 环境安装 确保已经安装torchtext与portalocker库 2. 加载数据 #加载数据 import torch import t…

【滑动窗口】Leetcode 找到字符串中所有字母异位词

题目解析 438. 找到字符串中所有字母异位词 算法讲解 寻找目标串的异位词&#xff0c;我们使用固定长度的滑动窗口&#xff0c;首先我们判断窗口左右的字符是否存在于目标串中&#xff0c;如果不存在就让窗口滑动&#xff1b;存在的话&#xff0c;我们就把字符丢进Hash中&a…

【JavaSE】类和对象详解(上)

欢迎关注个人主页&#xff1a;逸狼 创造不易&#xff0c;可以点点赞吗~ 如有错误&#xff0c;欢迎指出~ 目录 类和对象 类的组成 对类的理解 成员变量的访问和类方法的调用 this 抛出一个问题 this的作用 初始化成员变量 未初始化的成员变量 代码举例 就地初始化 构…

每日一题(leetcode331):验证二叉树的前序序列化——栈

类似消消乐&#xff0c;数字&#xff0b;“#”“#”就可以消成一个“#”&#xff0c;到最后如果栈中只剩一个“#”便说明序列正确。 当然也可以用槽位理解&#xff0c;一个数字出现会消耗一个槽位产生两个槽位&#xff08;即产生一个槽位&#xff09;&#xff0c;一个“#”出现…

题目:安全序列(蓝桥OJ 3432)

问题描述&#xff1a; 题解&#xff1a; #include <bits/stdc.h> using namespace std; using ll long long; const int N 1e6 9, p 1e9 7;int prefix[N],dp[N];int main() {int n, k;cin >> n >> k;dp[0] prefix[0] 1;for(int i 1; i < n; i){i…

iptables 与 firewalld 防火墙

iptables iptables 是一款基于命令行的防火墙策略管理工具 四种防火墙策略&#xff1a; ACCEPT&#xff08;允许流量通过&#xff09; 流量发送方会看到响应超时的提醒&#xff0c;但是流量发送方无法判断流量是被拒绝&#xff0c;还是接收方主机当前不在线 REJECT&#xff08…

STM32的IAP技术,BootLoader

来源 三种下载方式&#xff1a; 1、ICP&#xff1a;ST-Link, 2、ISP: FlyMcu, 3、IAP IAP简介 IAP技术的核心在于BootLoader程序的设计&#xff0c;这段程序预先烧录在单片机中&#xff0c;正常的APP程序可以使用BootLoader程序中的IAP功能写入&#xff0c;也可以两部分代码一…

【JavaEE初阶系列】——常见的锁策略

目录 &#x1f6a9;乐观锁和悲观锁 &#x1f6a9;读写锁和普通互斥锁 &#x1f6a9;轻量级锁和重量级锁 &#x1f6a9;自旋锁和挂起等待锁 &#x1f6a9;公平锁和非公平锁 &#x1f6a9;可重入锁和不可重入锁 &#x1f6a9;关于synchronized的锁策略以及自适应 接下来讲解的锁策…

Springboot之RESTful风格

目录 1、概述&#xff1a; 1.1、传统风格的API&#xff1a; 1.2、RESTful风格的API&#xff1a; 1.3、GET、POST、PUT、DELETE&#xff1a; 2、RESTful风格相关的注解&#xff1a; ①PathVariable&#xff0c;用来获取url中的数据&#xff1b; ②GetMapping&#xff0c;接…

C++教学——从入门到精通 6.ASCII码与字符型

如何把小写字母转换成大写字母呢&#xff1f; 这个问题问的好&#xff0c;首先我们要新学一个类型——char 这个类型就是字符型 再来说说ASCII码 给大家举几个例子 空格————32 0————48 9————57 A————65 Z————90 a————97 z————122 我们…