自然语言处理14-基于文本向量和欧氏距离相似度的文本匹配,用于找到与查询语句最相似的文本

大家好,我是微学AI,今天给大家介绍一下自然语言处理14-基于文本向量和欧氏距离相似度的文本匹配,用于找到与查询语句最相似的文本。NLP中的文本匹配是指通过计算文本之间的相似度来找到与查询语句最相似的文本。其中一种常用的方法是基于文本向量和欧氏距离相似度。将待匹配的文本和查询语句都转换为向量表示。可以使用词袋模型、tf-idf等方法将文本转换为向量。词袋模型将文本表示为每个词汇在文本中的出现次数,tf-idf则考虑了词汇在整个语料库中的重要性。 计算文本向量之间的欧氏距离。欧氏距离是一种常用的衡量向量相似度的方法,它表示两个向量之间的几何距离。 选择与查询语句具有最小欧氏距离的文本作为匹配结果。距离越小,表示两个文本越相似。

项目背景

基于文本向量和欧氏距离相似度进行文本匹配。通过将文本表示为向量,可以计算两个文本之间的欧氏距离相似度来衡量它们的语义相似程度。这种相似度匹配方法可以应用于各种文本相关的任务,如信息检索、句子匹配、推荐系统等。

该项目解决了文本匹配中的一个痛点,即如何找到与查询语句最相似的文本。在大规模的文本数据中,快速准确地找到与用户输入查询语句相关的文本对于提供高效的信息检索和推荐非常重要。传统的基于关键词匹配的方法往往无法处理语义相似度,而基于文本向量和欧氏距离相似度的方法可以更好地捕捉文本之间的语义关系,提高匹配的准确性。

通过该项目,可以实现快速地搜索和匹配与查询语句最相关的文本,从而提供更准确的搜索结果和个性化推荐,大大提高用户体验。同时,该方法还可以应用于其他领域,如自然语言处理、文本挖掘等,有着广泛的应用前景。

数学原理

基于文本向量和欧式距离相似度的文本相似度匹配是通过计算文本之间的向量表示之间的欧式距离来确定它们的相似程度。下面是相关的数学原理:

  1. 文本向量表示:将文本转化为向量表示通常使用词袋模型(Bag-of-Words)或者词嵌入(Word Embedding)、TF-IDF技术。在词袋模型中,文本被表示为一个向量,其中每个维度对应于一个单词或特征。词嵌入则通过将每个单词映射到一个低维连续向量空间中的向量来表示文本。

  2. 欧式距离:欧式距离是用来衡量两个向量直接的距离。对于两个向量x和y,其欧式距离可以通过以下公式计算:

    d ( x , y ) = ∑ i = 1 n ( x i − y i ) 2 d(x, y) = \sqrt{\sum_{i=1}^{n}(x_i - y_i)^2} d(x,y)=i=1n(xiyi)2

    其中, n n n是向量的维度, x i x_i xi y i y_i yi 分别表示向量 x x x y y y 在第 i i i个维度上的取值。

  3. 相似度计算:根据欧式距离,我们可以计算文本之间的相似度得分。相似度计算方法通常是将欧式距离映射到一个相似度范围内,例如使用归一化公式:

    s i m i l a r i t y = 1 1 + d similarity = \frac{1}{1 + d} similarity=1+d1

    其中, d d d是欧式距离。

通过计算查询语句与其他文本之间的欧式距离,并根据相似度计算公式计算相似度得分,可以找到与查询语句最相似的文本。相似度得分越高,表示两个文本越相似。
在这里插入图片描述

实现步骤:

1.将样例数据存储在documents列表中,每个元素代表一个文本。

2.使用分词工具jieba对文本进行分词处理,生成分词后的文本列表documents_tokenized。

3.构建词汇表,使用TfidfVectorizer类来计算TF-IDF矩阵。TF-IDF是一种文本特征表示方法,它考虑了词频和逆文档频率,可以反映出词在文本中的重要程度。

4.将TF-IDF矩阵转换为DataFrame,其中行代表每个文本,列代表每个词汇。

5.定义查询语句并将其分词处理得到查询向量。

6.计算查询向量与库中各文本向量的余弦相似度,得到一个相似度矩阵。

7.找到相似度矩阵中相似度最高的文本索引,即为与查询语句最相似的文本。

8.最后,输出查询语句和最相似文本。

实现代码

现在用最清晰的代码实现文本相似度查找的功能:

import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import jieba

# 样例数据
documents = ['北京的天气挺好',
             '我要去北京玩',
             '我来自中国',
             "北京是比较好玩的地方",
             "北京有故宫这个景点",
             "这个假期去福州玩,感觉不错",
             '上海的天气很热',
             '我打算去上海旅游',
             '上海是一个现代化城市',
             '上海有很多高楼大厦',
             '上海的夜景非常美丽',
             '这个周末我要去上海参加活动',
             '广州的气温很高',
             '我喜欢广州的美食',
             '广州是一个繁华的城市',
            '广州有很多著名的旅游景点']

# 分词处理
tokenizer = lambda x: jieba.cut(x)

# 将文本进行分解
documents_tokenized = [" ".join(tokenizer(doc)) for doc in documents]

# 构建词汇表
vectorizer = TfidfVectorizer()
vectorizer.fit(documents_tokenized)
vocabulary = vectorizer.get_feature_names_out()

# 计算TF-IDF矩阵
tfidf_matrix = vectorizer.transform(documents_tokenized)

# 存储文本向量
df = pd.DataFrame(tfidf_matrix.toarray(), columns=vocabulary)



if __name__ == "__main__":

    # 查询相似度
    query = "你知道假期去福州,有什么景点推荐的"
    query_tokenized = " ".join(tokenizer(query))
    query_vector = vectorizer.transform([query_tokenized])

    # 计算查询向量与库中向量的相似度
    similarity_scores = cosine_similarity(query_vector, tfidf_matrix)

    print(similarity_scores)

    # 找到相似度最高的文本
    most_similar_index = similarity_scores.argmax()
    most_similar_text = documents[most_similar_index]

    print("查询语句:", query)
    print("最相似文本:", most_similar_text)

运行结果:

[[0.        0.        0.        0.        0.3319871 0.5341931]]
查询语句: 你知道假期去福州,有什么景点推荐的
最相似文本: 这个假期去福州玩,感觉不错

总结

本文介绍了一种基于文本向量和欧氏距离相似度的文本匹配方法,用于找到与查询语句最相似的文本。首先,通过将文本和查询语句转换为向量表示,使用词袋模型或tf-idf等方法进行向量化。然后,计算文本向量之间的欧氏距离,衡量它们之间的相似度。最后,选择具有最小欧氏距离的文本作为匹配结果。该方法强调了文本的语义信息,但忽略了上下文信息。在实际应用中,可以结合其他技术和算法以提高准确性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/50432.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

贼全! 一举通关的 Spring+SpringBoot+SpringCloud 全攻略, 是真香啊

前几天,有幸从朋友那里得到了一份 Alibaba 内部的墙裂推荐的“玩转 Spring 全家桶的 PDF”,我也不是个吝啬的人,好的东西当然要一起分享。那今天我就秀一把,带你一站通关 Spring、Spring Boot 与 Spring Cloud,让你轻松斩获大厂 O…

【C++】多态、黑马程序员案例— —电脑组装、Visual Studio开发人员工具查看内部结构,cl /d1 reportSingleClassLayout

author:&Carlton tag:C topic:【C】多态、黑马程序员案例— —电脑组装、Visual Studio开发人员工具查看内部结构,cl /d1 reportSingleClassLayout website:黑马程序员C date:2023年7月24日 目录 纯虚函数、抽…

【Spring】什么是Bean的生命周期及作用域,什么是Spring的执行流程?

博主简介:想进大厂的打工人博主主页:xyk:所属专栏: JavaEE进阶 在前面的播客中讲解了如何从Spring中存取Bean对象,那么本篇我们来讲解Bean对象的生命周期是什么,Bean对象的6种作用域分别是什么,都有哪些区别&#xff…

7年经验之谈 —— 浅谈web性能测试

什么是性能测试? web性能应该注意些什么? 性能测试,简而言之就是模仿用户对一个系统进行大批量的操作,得出系统各项性能指标和性能瓶颈,并从中发现存在的问题,通过多方协助调优的过程。而web端的性能测试…

高效协作处理缓存清理需求:生产者-消费者模式助力多模块缓存管理

在现代应用系统中,缓存是提高性能和减少数据库负载的重要手段之一。然而,缓存的数据在某些情况下可能会过期或者变得无效,因此需要及时进行清理。在复杂的应用系统中,可能有多个系统、多个模块产生缓存清理需求,而这些…

【LeetCode】剑指 Offer Ⅱ 第1章:整数(5道题) -- Java Version

题库链接:https://leetcode.cn/problem-list/e8X3pBZi/ 题目解决方案剑指 Offer II 001. 整数除法快速除 ⭐剑指 Offer II 002. 二进制加法模拟:StringBuilder ⭐剑指 Offer II 003. 前 n 个数字二进制中 1 的个数动规:res[i] res[i & (…

【组内工作】木马回联

文章目录 C2服务器安装和运行方法CrossC2运行方法sliver运行方法empire安装方法DeimosC2安装教程TrevorC2安装教程: C2服务器的流量特征CrossC21. 心跳包2. 命令3. ja3/ja3s Sliver1. http2. https empirehttphttps DeimosC2https TrevorC2 C2服务器安装和运行方法 …

C\C++内存管理

目录 1.C/C内存分布2.C语言中动态内存管理方式3.C中动态内存管理3.1new/delete内置类型3.2new和delete操作自定义类型 4.operator new与operator delete函数4.2重载operator new与operator delete(了解) 5.new和delete的实现原理5.1内置类型5.2 自定义类…

2023亚马逊云科技中国峰会——Amazon DeepRacer

1.DeepRacer技术背景 早在20世纪初汽车问世之时,发明家们便已提出无人驾驶的设想。但即便是实现无人驾驶的初级阶段,也经历了足足百年时间。毕竟在复杂的城市路况下,机器若想像人一样实现感知、决策、控制等功能,必定面临各种复杂…

每日一博 - How To Improve API Performance

文章目录 包括但局限于以下措施1. 采用分页显示2. 异步记录日志3. 利用缓存技术4. 实施负载压缩5. 管理数据库连接池 包括但局限于以下措施 1. 采用分页显示 当查询结果过多时,将结果分为多个页面进行显示,可以有效地提高系统的响应速度。这样&#xff…

IntelliJ IDEA 2023.2 主要更新了什么?(纯文本介绍版)

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…

empty module导致的lvs问题

write_verilog时-exclude empty_modules即可 这里也分享一下ICC2 write lvs netlist的命令 write_verilog -exclude {scalar_wire_declarations leaf_module_declarations empty_modules well_tap_cells filler_cells supply_statements} -hierarchy all -force_no_referenc…

Spring MVC 是什么?

一、什么是 Spring MVC? 官方对于 Spring MVC 的描述是这样的: Spring Web MVC is the original web framework built on the Servlet API and has been included in the Spring Framework from the very beginning. The formal name, “Spring Web …

信息安全战线左移!智能网联汽车安全亟需“治未病”

当汽车由典型的工业机械产品逐步发展成为全新的智能移动终端,汽车的安全边界发生了根本性改变,信息安全风险和挑战不断增加。 面对复杂的异构网络、异构系统及车规级特异性要求,智能智能网联汽车信息安全到底要如何防护,已经成为…

【Linux】POSIX信号量

1 认识信号量 前面的初识信号量 信号量(信号灯):本质就是一个计算器信号量需要进行PV操作,P -- ;V ,原子的!信号量是用来描述临界资源中资源数目的 根据资源数目分成两类一个资源&#xff…

JVM类加载

一、类记载过程 1、通过类的全限定名获取存储该类的class文件 2、解析成运行时数据,即instanceKlass实例,存放到方法区 3、在堆区生成该类的class对象,即instanceMirrorKlass实例 二、将.class文件解析成什么?类的元信息在JVM中如何…

IOS UICollectionView 设置cell大小不生效问题

代码设置flowLayout.itemSize 单元格并没有改变布局大小, 解决办法如下图:把View flow layout 的estimate size 设置为None,上面设置的itemSize 生效了。

系统架构设计师-软件架构设计(5)

目录 一、构件与中间件技术 1、软件复用 2、构件与中间件技术的概念 3、构件的复用 3.1 检索与提取构件 3.2 理解与评价构件 3.3 修改构件 3.4 组装构件 4、中间件 4.1 采用中间件技术的优点: 4.2 中间件的分类: 5、构件标准 5.1 CORBA(公共…

【弹力设计篇】弹力设计总结

前面主要聊了多个弹力设计,遮盖力主要做一个汇总 弹力设计总图 集群:服务不能是单点的,所以我们的架构需要冗余设计,设计成集群服务,也就是多个副本机制。需要具体的技术 负载均衡服务健康检查,使用像Ng…

【单谐波非线性振动问题求解器 GUI 】使用单个谐波表示解决 MDOF 非线性振动问题(Matlab代码实现)

目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 💥1 概述 对于解决多自由度(MDOF)非线性振动问题,使用单个谐波表示是一种常见的近似方法。这种方法将系统的非线性部…