算法学习——LeetCode力扣动态规划篇2

算法学习——LeetCode力扣动态规划篇2

在这里插入图片描述

343. 整数拆分

343. 整数拆分 - 力扣(LeetCode)

描述

给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。

返回 你可以获得的最大乘积 。

示例

示例 1:

输入: n = 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。

示例 2:

输入: n = 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。

提示

2 <= n <= 58

代码解析

dp[i]:分拆数字i,可以得到的最大乘积为dp[i]。

确定递推公式
可以想 dp[i]最大乘积是怎么得到的呢?

其实可以从1遍历j,然后有两种渠道得到dp[i].

一个是j * (i - j) 直接相乘。
一个是j * dp[i - j],相当于是拆分(i - j),对这个拆分不理解的话,可以回想dp数组的定义。

也可以这么理解,j * (i - j) 是单纯的把整数拆分为两个数相乘,而j * dp[i - j]是拆分成两个以及两个以上的个数相乘。

所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});

那么在取最大值的时候,为什么还要比较dp[i]呢?

因为在递推公式推导的过程中,每次计算dp[i],取最大的而已。
在这里插入图片描述

class Solution {
public:
    int integerBreak(int n) {
       vector<int> dp(n+1,0);
       dp[2] = 1 ; 
       for(int i=3 ; i<=n;i++)
       {
       	   //计算i的分割点,j从1开始分割到i-1
           for(int j=1 ; j<i ;j++)
           {
           		//找到最大乘积的时候
                dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
                cout<<"i:"<<i<<"  dp:"<<dp[i]<<endl;
           }
       }
       return dp[n];
    }
};

96. 不同的二叉搜索树

96. 不同的二叉搜索树 - 力扣(LeetCode)

描述

给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。

在这里插入图片描述

示例

示例 1:

输入:n = 3
输出:5

示例 2:

输入:n = 1
输出:1

提示

1 <= n <= 19

代码描述

当3为头结点的时候,其左子树有两个节点,看这两个节点的布局,是不是和n为2的时候两棵树的布局也是一样的啊!

当2为头结点的时候,其左右子树都只有一个节点,布局是不是和n为1的时候只有一棵树的布局也是一样的啊!

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量
元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]

动态规划

确定递推公式
dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]

j相当于是头结点的元素,从1遍历到i为止。

所以递推公式:dp[i] += dp[j - 1] * dp[i - j];
j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量

dp数组如何初始化

从定义上来讲,空节点也是一棵二叉树,也是一棵二叉搜索树,这是可以说得通的。

j为头结点左子树节点数量为0,也需要dp[以j为头结点左子树节点数量] = 1, 否则乘法的结果就都变成0了。
所以初始化dp[0] = 1

class Solution {
public:
    int numTrees(int n) {
        if(n<=2) return n;
        vector<int> dp(n+1,0);
        dp[0] = 1;
        dp[1] = 1;
        dp[2] = 2;

        for(int i=3 ; i<=n ;i++)
        {
            for(int j=1 ; j<=i ;j++)
            {
                dp[i] += dp[j-1] * dp[i-j];
            }
        }
        return dp[n];
    }
};

416. 分割等和子集

416. 分割等和子集 - 力扣(LeetCode)

描述

给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

示例

示例 1:

输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。

示例 2:

输入:nums = [1,2,3,5]
输出:false
解释:数组不能分割成两个元素和相等的子集。

提示

1 <= nums.length <= 200
1 <= nums[i] <= 100

代码解析

一个商品如果可以重复多次放入是完全背包,而只能放入一次是01背包,写法还是不一样的。
本题中使用的是01背包,因为元素我们只能用一次。

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。
动态背包(二维背包)

dp[ i ][ j ] 中

  • i 是放入背包中元素的范围,从0 - i 中取元素,每个元素取一次。
  • j 是当前背包的容量上限
    本题的核心是找到刚好背包容量是sum/2装满的时候。
class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int sum  = 0 , target = 0;
        for(auto it:nums) sum += it;
        //如果和是奇数,就不能分成两个相等的子集
        if(sum%2 == 1) return false; 
        //目标是找到sum/2
        target = sum/2;
        vector<vector<int>> dp(nums.size() , vector<int>(target+1 , 0));
		//背包初始化第一行的值,第一行是只能放第一个元素
		//检查背包的大小能否放进去,能就放进去第一个元素,不能就空着
		//第一列是背包容量是0的时候,dp[i][0]也都是0,不用额外初始化
        for(int j = 1 ; j<=target ;j++  )
            if(j>=nums[0]) dp[0][j] = nums[0];
        //开始遍历
        for(int i=1 ; i<nums.size() ;i++)
        {
            for(int j = 1 ; j<=target ;j++)
            {
            	//如果当前值大于背包的容量,就不放进去
                if(j < nums[i]) dp[i][j] = dp[i-1][j];
                //如果可以放进去,就找放进去和不放进去大的一个
                else dp[i][j] = max(dp[i-1][j],dp[i-1][j-nums[i]] + nums[i]);
            }
        }
        //最后在背包大小是sum/2的一列里找,刚好背包装满的
        for(int i=0; i<nums.size();i++)
            if(dp[i][target]==target) return true;
        
        return false;
    }
};

1049. 最后一块石头的重量 II

1049. 最后一块石头的重量 II - 力扣(LeetCode)

描述

有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0。

示例

示例 1:

输入:stones = [2,7,4,1,8,1]
输出:1
解释:
组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。

示例 2:

输入:stones = [31,26,33,21,40]
输出:5

提示

1 <= stones.length <= 30
1 <= stones[i] <= 100

代码解析

本题其实就是尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小,这样就化解成01背包问题了。

本题物品的重量为store[i],物品的价值也为store[i]。

动态规划(二维数组)

找到总重量最接近sum/2 的背包,这是一个石头堆。
和另一个堆相减,就是剩下的

class Solution {
public:
    int lastStoneWeightII(vector<int>& stones) {

        if(stones.size() == 1 ) return stones[0];
        int sum = 0;
        for(auto it:stones) sum += it;
        vector<vector<int>> dp (stones.size() , vector<int>( sum /2 + 1 , 0) ) ;

        for(int j=1 ; j<=sum/2 ;j++)
            if(j>=stones[0]) dp[0][j] = stones[0];
        //找到背包为sum/2以内最大的种类
        for(int i=1 ;i<stones.size() ;i++)
        {
            for(int j=1 ; j<=sum/2 ;j++)
            {
                if(j>=stones[i]) 
                    dp[i][j] = max( dp[i-1][j] , dp[i-1][j-stones[i]] + stones[i]);
                else dp[i][j] = dp[i-1][j];
            }
        }
		//找到最接近sum/2的背包
        int bag_max = 0;
        for(int i=0 ;i<stones.size() ;i++ )
        {
            if(dp[i][sum/2] > bag_max) bag_max = dp[i][sum/2];
        }
		//计算石头堆的差
        return (sum - bag_max) - bag_max;


    }
};

动态规划(滚动数组)

在这里插入图片描述

class Solution {
public:
    int lastStoneWeightII(vector<int>& stones) {

        if(stones.size() == 1 ) return stones[0];
        int sum = 0;
        for(auto it:stones) sum += it;
        vector<int> dp (sum /2 + 1 , 0);

        for(int i=0 ;i<stones.size() ;i++)
        {
            for(int j=sum/2 ; j>=0 ;j--)
            {
                if(j>=stones[i]) 
                    dp[j] = max( dp[j] , dp[j-stones[i]] + stones[i]);
                else dp[j] = dp[j];
            }
        }
        return (sum - dp[sum/2]) - dp[sum/2];
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/502432.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

java: 找不到符号 符号: 变量 log

在以下位置加上该配置"-Djps.track.ap.dependenciesfalse"

文件操作(随机读写篇)

1. 铺垫 建议先看&#xff1a; 文件操作&#xff08;基础知识篇&#xff09;-CSDN博客 文件操作&#xff08;顺序读写篇&#xff09;-CSDN博客 首先要指出的是&#xff0c;本篇文章中的“文件指针”并不是指FILE*类型的指针&#xff0c;而是类似于打字时的光标的东西。 打…

C++:类的6大默认成员函数:赋值运算符重载

文章目录 赋值运算符重载1.1 运算符重载的引用1.2 运算符重载的概念1.3 赋值运算符重载总结一下(赋值运算符) 赋值运算符重载 1.1 运算符重载的引用 有一个日期类Date: class Date { public:Date(int year 1900, int month 1, int day 1){_year year;_month month;_da…

Rust使用feature特性和条件编译,以及常用feature使用说明

Cargo Feature 是非常强大的机制&#xff0c;可以为大家提供条件编译和可选依赖的高级特性&#xff0c;可以为你省下不少的代码量来判断操作系统和条件编译等功能。rust官方条件编译文档&#xff1a;Conditional compilation - The Rust Reference features特性 Featuure 可以…

GeometryInstance点击改变颜色

目录 项目地址实现效果核心代码 项目地址 https://github.com/zhengjie9510/webgis-demo 实现效果 核心代码 // Draw different instances each with a unique color const rectangleInstance new Cesium.GeometryInstance({geometry: new Cesium.RectangleGeometry({recta…

EFCore的空迁移(EFCore操作已存在的数据库表,不影响其中的数据)

背景&#xff1a;EFCore默认的会自动创建数据表&#xff0c;但是有时又是DBFirst&#xff0c;数据库写好了要用现成的表。这个时候就需要进行一些特殊的操作了 1、写出跟要对接数据库的实体类 比如我的表是这样创建的 create table mail_test (user_id bigint auto_increment …

【Entity Framework】EF中DbSet类详解

【Entity Framework】EF中DbSet类详解 文章目录 【Entity Framework】EF中DbSet类详解一、概述二、定义DbSet2.1 具有DbSet属性的DbContext2.2 具有 IDbSet 属性的 DbContext 2.3 具有 IDbSet 属性的 DbContext三、DbSet属性四、DbSet方法五、DbContext动态生成DbSet 一、概述 …

医院消防巡检系统革新:凡尔码平台二维码技术引领安全升级

医院消防巡检&#xff0c;传统依赖手工记录&#xff0c;效率和准确性受限。凡尔码平台的二维码消防巡检系统&#xff0c;以创新技术颠覆传统&#xff0c;实现即时、精准的安全管理&#xff0c;确保医院消防安全无虞。 凡尔码平台的消防巡检系统不仅提升了医院安全管理的效率&a…

基于SpringBoot + Vue实现的校园失物招领系统设计与实现+毕业论文

介绍 系统包含用户和管理员两个角色 用户&#xff1a;登录、注册、留言板、公告信息、失物招领、失物认领、寻物启事、个人中心、我发布的失物信息、我的失物认领、我发布的寻物启事、寻物启事留言等功能。 管理员&#xff1a;登录、基础数据管理、系统管理、留言板管理、失物信…

Linux项目自动化构建工具-make/ makefile及其应用:多文件编写第一个linux程序:进度条(懒人学习必备博文!!!)

目录 1.前言--make/makefile的引入 2.快速上手make/makefile---自动化构建 3.关于依赖关系和依赖方法 4.自动化清理 为什么我们执行编译的时候&#xff0c;make一下就好&#xff0c;清理却要使用make clean? 5. make/makefile是如何知道当前目录下可执行文件是否为最新 6.文件…

SQLServer sys.default_constraints介绍

sys.default_constraints 是 SQL Server 的系统视图&#xff0c;它包含了数据库中所有默认约束的信息。默认约束是数据库对象&#xff08;如表中的列&#xff09;的约束&#xff0c;它为列定义了一个默认值&#xff0c;当在插入新行时没有为该列提供值时&#xff0c;将使用这个…

集合嵌套,Collections,斗地主案例,日志框架

文章目录 集合嵌套List嵌套ListList嵌套MapMap嵌套Map Collections类方法排序 sort 乱序 shuffle 斗地主案例需求思路代码 日志框架介绍优势体系结构Logback概述快速入门配置详解 集合嵌套 List嵌套List public static void main(String[] args){//一个年级有许多班级&#xf…

spring boot 整合j2cache 基础操作

spring boot 整合缓存的内容呢 已经学了好久了 那么 今天 我们开始学习 j2cache 这个技术 并不是一个缓存 而是一个框架 我们可以将其他缓存配到这套框架上来 那么 我们就还是弄最熟悉的 ehcache redis进行整合 首先 我们启动 redis 然后 我们打开项目 pom.xml 注入依赖 …

【2024系统架构设计】案例分析- 2 系统开发基础

目录 一 基础知识 二 真题 一 基础知识 1 结构化的需求分析 结构化特点:自顶向下,逐步分解,面向数据。 三大模型:

springboot通过threadLocal+参数解析器实现保存当前用户登录信息

首先先介绍一下threadLocal ThreadLocal 线程局部变量&#xff0c;创建一个线程变量后&#xff0c;针对这个变量可以让每个线程拥有自己的变量副本&#xff0c;每个线程是访问的自己的副本&#xff0c;与其他线程的相互独立。 大致知道threadLocal就可以了&#xff0c;然后我…

web基础07-Vue

目录 一、Vue 1.概述 2.MVC与MVVM 3.快速入门 4.Vue工程的创建 &#xff08;1&#xff09;基于vue-cli &#xff08;2&#xff09;基于Vite&#xff08;推荐&#xff09; 5.Vue3核心语法 6.setup &#xff08;1&#xff09;概述 &#xff08;2&#xff09;返回值方式…

CTF题型 php://filter特殊编码绕过小汇总

CTF题型 php://filter特殊编码绕过小汇总 文章目录 CTF题型 php://filter特殊编码绕过小汇总特殊编码base64编码string过滤器iconv字符集 例题1.[Newstarctf 2023 week2 include]2.[Ctfshow web 117] php://filter 是一个伪协议&#xff0c;它允许你读取经过过滤器处理的数据流…

Java中的Object类解析与应用探究

作为一名对技术充满热情的学习者&#xff0c;我一直以来都深刻地体会到知识的广度和深度。在这个不断演变的数字时代&#xff0c;我远非专家&#xff0c;而是一位不断追求进步的旅行者。通过这篇博客&#xff0c;我想分享我在某个领域的学习经验&#xff0c;与大家共同探讨、共…

基于单片机自行车码表系统设计

**单片机设计介绍&#xff0c;基于单片机自行车码表系统设计 文章目录 一 概要二、功能设计三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机自行车码表系统设计主要涵盖了硬件设计、软件设计以及功能实现等多个方面。以下是对该设计概要的详细描述&#xff1a…

Sql注入靶场环境搭建

文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 前言 提示&#xff1a;这里可以添加本文要记录的大概内容&#xff1a; 例如&#xff1a;随着人工智能的不断发展&#xff0c;机器学习这门技术也越来越重要&#xff0c;很多人都开启了学习机器…