深度学习入门简单实现一个神经网络

实现一个三层神经网络

  • 引言
    • 测试数据
  • 代码

引言

今天我们实现一个简单的神经网络
俩个输入神经元 隐藏层两个神经元 一个输出神经元
激活函数我们使用sigmoid
优化方法使用梯度下降

在这里插入图片描述

我们前期准备是需要把这些神经元的关系理清楚
x1:第一个输入
x2:第二个输入
w11_1:第一层的第一个神经元在第一个输入上的权重
w12_1:第一层的第二个神经元在第一个输入上的权重
b1_1:第一层第一个神经元的偏置项(截距)
z1_1:第一层第一个神经元的线性函数
a1_1:第一层第一个神经元的激活函数
w21_1:第一层的第一个神经元在第一个输入上的权重
w22_1:第一层的第一个神经元在第一个输入上的权重
b2_1:第一层第二个神经元的偏置项(截距)
z1_1:第一层第二个神经元的线性函数
a1_1:第一层第二个神经元的激活函数
w11_2:第二层的第一个神经元在第一个输入上的权重
w21_2:第二层的第二个神经元在第一个输入上的权重
b1_2:第二层第一个神经元的偏置项(截距)
z1_1:第二层第一个神经元的线性函数
a1_1:第二层第一个神经元的激活函数
e:损失函数

测试数据

dataset 可以使用西瓜书89页的西瓜数据集3.0α

代码

import numpy as np
import sympy
import dataset
from matplotlib import pyplot as plt


def sigmod(b):
    return 1 / (1 + np.exp(-b))


xs, ys = dataset.get_beans(100)  # 获取数据
plt.title("Size-Toxicity Funciton", fontsize=12)  # 设置图片的标题
plt.xlabel("Bean Size")  # 设置行标签
plt.ylabel("Toxicity")  # 设置列标签

plt.scatter(xs, ys)  # 画散点图

"""
命名规则
下划线后面的数字表示被输入的神经元所在的层数
字母后面的数字表示第一个数字表示第几个输入
第二个数字表示被输入的神经元在他所在层数的位置
"""
# 第一层
# 第一个神经元
w11_1 = np.random.rand()
b1_1 = np.random.rand()
# 第二个神经元
w12_1 = np.random.rand()
b2_1 = np.random.rand()
# 第二层
w11_2 = np.random.rand()
w21_2 = np.random.rand()
b1_2 = np.random.rand()


# 前向传播 代价函数 y0 = 1/(1+e^(-(wx+b)))
def forward_propgation(xs):
    z1_1 = w11_1 * xs + b1_1
    a1_1 = sigmod(z1_1) # 第一层第一个神经元的代价函数值

    z2_1 = w12_1 * xs + b2_1
    a2_1 = sigmod(z2_1)  # 第一层第二个神经元的代价函数值

    z1_2 = w11_2 * a1_1 + w21_2 * a2_1 + b1_2
    a1_2 = sigmod(z1_2)   # 第二层第一个神经元的代价函数值
    return a1_2, z1_2, a2_1, z2_1, a1_1, z1_1



a1_2, z1_2, a2_1, z2_1, a1_1, z1_1 = forward_propgation(xs)
# plt.plot(xs, a1_2)
# plt.show()

# 随机梯度下降
for j in range(5000):
    for i in range(100):
        x = xs[i]
        y = ys[i]
        # 先来一次前向传播
        a1_2, z1_2, a2_1, z2_1, a1_1, z1_1 = forward_propgation(x)
        # 开始反向传播
        # 误差代价函数e
        """
            z1_1 = w11_1 * xs + b1_1
            a1_1 = sigmod(z1_1) # 第一层第一个神经元的代价函数值

            z2_1 = w12_1 * xs + b2_1
            a2_1 = sigmod(z2_1)  # 第一层第二个神经元的代价函数值

            z1_2 = w11_2 * a1_1 + w21_2 * a2_1
            a1_2 = sigmod(z1_2)   # 第二层第一个神经元的代价函数值
        """
        e = (y - a1_2) ** 2  # 误差e = (y - 最后一个神经元得出的值)^2
        deda1_2 = -2*(y - a1_2)  # 对a1_2 第二层的第一个神经元的函数求导
        da1_2dz1_2 = a1_2 * (1 - a1_2)  # da1_2对dz1_2求导数
        dz1_2dw11_2 = a1_1  # dz1_2对w11_2求导数
        dz1_2dw21_2 = a2_1  # dz1_2对dw21_2求导
        dedw11_2 = deda1_2 * da1_2dz1_2 * dz1_2dw11_2  # de对dw11_2求偏导
        dedw21_2 = deda1_2 * da1_2dz1_2 * dz1_2dw21_2  # de对dw21_2求偏导
        dz1_2db1_2 = 1  # z1_2对db1_2求偏导
        dedb1_2 = deda1_2 * da1_2dz1_2 * dz1_2db1_2  # de对db1_2求偏导

        dz1_2da1_1 = w11_2  # dz1_2对da1_1求偏导
        da1_1dz1_1 = a1_1 * (1 - a1_1)  # da1_1对dz1_1 求偏导
        dz1_1dw11_1 = x  # dz1_1对dw11_1求偏导
        dedw11_1 = deda1_2 * da1_2dz1_2 * dz1_2da1_1 * da1_1dz1_1 * dz1_1dw11_1  # e对w11_1求导
        dz1_1db1_1 = 1  # z1_1对b1_1求导
        dedb1_1 = deda1_2 * da1_2dz1_2 * dz1_2da1_1 * da1_1dz1_1 * dz1_1db1_1  # e对b1_1求导

        dz1_2da2_1 = w21_2  # z1_2 对a2_1 求导
        da2_1dz2_1 = a2_1 * (1 - a2_1)  # a2_1 对z2_1求导
        dz2_1dw12_1 = x  # z2_1对w12_1
        dedw12_1 = deda1_2 * da1_2dz1_2 * dz1_2da1_1 * da2_1dz2_1 * dz2_1dw12_1  # e对w12_1求导
        dz2_1db2_1 = 1  # z2_1 对 b2_1求导
        dedb2_1 = deda1_2 * da1_2dz1_2 * dz1_2da1_1 * da2_1dz2_1 * dz2_1db2_1  # e 对 b2_1求导

        alpha = 0.03
        w11_2 = w11_2 - alpha * dedw11_2  # 调整w11_2
        w21_2 = w21_2 - alpha * dedw21_2  # 调整21_2
        b1_2 = b1_2 - alpha * dedb1_2  # 调整b1_2

        w12_1 = w12_1 - alpha * dedw12_1  # 调整w12_1
        b2_1 = b2_1 - alpha * dedb2_1  # 调整 b2_1

        w11_1 = w11_1 - alpha * dedw11_1  # 调整 w11_1
        b1_1 = b1_1 - alpha * dedb1_1  # 调整b1_1
    if j % 100 == 0:
        plt.clf()  # 清空窗口
        plt.scatter(xs, ys)
        a1_2, z1_2, a2_1, z2_1, a1_1, z1_1 = forward_propgation(xs)
        plt.plot(xs, a1_2)
        plt.pause(0.01)  # 暂停0.01秒

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/500206.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux系统----------探索mysql数据库MHA高可用

目录 一、MHA概述 1.1 什么是 MHA 1.2MHA 的组成 1.2.1MHA Node(数据节点) 1.2.2MHA Manager(管理节点) 1.3MHA 的特点 1.4MHA工作原理 1.5数据同步的方式 1.5.1同步复制 1.5.2异步复制 1.5.3半同步复制 二、搭建 MySQ…

8.6 循环神经网络的简洁实现

每个步长共用参数 加载数据 虽然 8.5节 对了解循环神经网络的实现方式具有指导意义,但并不方便。 本节将展示如何使用深度学习框架的高级API提供的函数更有效地实现相同的语言模型。 我们仍然从读取时光机器数据集开始。 import torch from torch import nn from…

华为流量整形配置

组网需求 如图1所示,企业网内部LAN侧的语音、视频和数据业务通过Switch连接到RouterA的Eth2/0/0上,并通过RouterA的GE3/0/0连接到WAN侧网络。 不同业务的报文在LAN侧使用802.1p优先级进行标识,在RouterA上根据报文的802.1p优先级入队列&…

Flutter环境搭建及版本管理

前言 Flutter已成为移动应用开发的主流选择,其跨平台优势日益凸显,使学习Flutter成为现代开发者的必备技能。越来越多的公司和团队选择Flutter构建应用,这为开发者提供了更广阔的就业机会和职业发展空间。Flutter的热度源自其强大的特性和生…

【动手学深度学习-pytorch】-9.3深度循环神经网络

到目前为止,我们只讨论了具有一个单向隐藏层的循环神经网络。 其中,隐变量和观测值与具体的函数形式的交互方式是相当随意的。 只要交互类型建模具有足够的灵活性,这就不是一个大问题。 然而,对一个单层来说,这可能具有…

WebCopilot:一款功能强大的子域名枚举和安全漏洞扫描工具

关于WebCopilot WebCopilot是一款功能强大的子域名枚举和安全漏洞扫描工具,该工具能够枚举目标域名下的子域名,并使用不同的开源工具检测目标存在的安全漏洞。 工具运行机制 WebCopilot首先会使用assetsfinder、submaster、subfinder、accumt、finddom…

layui laydate日期初始化的一些坑

layui laydate日期初始化的一些坑 背景坑一:利用class属性初始化时间控件失败坑二:后加载页面时间控件初始化失败坑三:结束时间需要默认追加23:59:59 背景 在日常开发中,总是会不可避免的用到日期插件,不同的日期插件…

IoT网关在智能制造工厂生产线监控与管理中的应用-天拓四方

随着工业4.0时代的到来,智能制造已成为工业发展的重要方向。IoT网关在智能制造工厂中扮演着关键角色,它能够实现设备间的互联互通、数据的实时采集与处理,以及生产线的智能监控与管理。本案例将详细介绍IoT网关在智能制造工厂生产线监控与管理…

100 个 Kotlin 面试问题及答案(其二)

尤其是在Android开发中,Kotlin已经成为一种流行的编程语言。为了帮助您在 Kotlin 面试中取得成功,我们为您简化了 100 个最常见的面试问题。本指南涵盖了广泛的主题,包括基本语言概念和高级功能。每个问题都附有简单的答案和实际示例&#xf…

Spring原理

这次我们来研究Bean的相关知识和spring boot自动配置的相关流程 1.Bean的作用域 1概念 在SpringIoC&DI阶段,我们学习了Spring是如何帮助我们管理对象的. 1. 通过 Controller ,Service , Repository , Component , Configuration , Bean 来声明…

Android R 广播注册与发送流程分析

静态广播注册时序图 动态广播注册时序图 发送广播时序图 前言 广播接收器可以分为动态和静态,静态广播接收器就是在 AndroidManifest.xml 中注册的,而动态的广播接收器是在代码中通过 Context#registerReceiver() 注册的。 这里先从静态广播的流程开始…

Pygame基础6-旋转

6-旋转 当我们想要旋转一个图片的时候, 我们可以使用pygame.transform.rotozoom获得旋转后的图片: kitten pygame.transform.rotozoom(kitten, angle, 1)问题是,每次旋转都会降低图片的质量。如果旋转很多次后,图片的质量会变得…

农村集中式生活污水分质处理及循环利用技术指南

立项单位:生态环境部土壤与农业农村生态环境监管技术中心、山东文远环保科技股份有限公司、北京易境创联环保有限公司、中国环境科学研究院、广东省环境科学研究院、中铁第五勘察设计院集团有限公司、中华环保联合会水环境治理专业委员会 本文件规定了集中式村镇生活…

【动手学深度学习-pytorch】9.2长短期记忆网络(LSTM)

长期以来,隐变量模型存在着长期信息保存和短期输入缺失的问题。 解决这一问题的最早方法之一是长短期存储器(long short-term memory,LSTM) (Hochreiter and Schmidhuber, 1997)。 它有许多与门控循环单元( 9.1节&…

婚恋交友APP小程序H5源码交付-支持二开!实名制交友,可服务器审核,亦可后台自己审核!同城交友,多人语音!

一、需求分析 在征婚交友网站开发初期,需求分析是至关重要的环节。这需要深入了解目标用户的需求和期望,包括他们的年龄、职业、兴趣爱好、交友条件等方面。通过收集和分析这些信息,开发团队可以明确网站的目标用户,并为他们提供…

东特科技现已加入2024第13届国际生物发酵产品与技术装备展

参展企业介绍 温州东特科技有限公司是一家集设计、生产、销售及服务为一体的卫生级流体设备企业。专业从事各种乳食品、制药、化工、啤酒设备、不锈钢卫生级阀门,管件,视镜,及非标配件定制等产品的销售与服务。先进的设计理念专业的技术优势一…

深度思考:雪花算法snowflake分布式id生成原理详解

雪花算法snowflake是一种优秀的分布式ID生成方案,其优点突出:它能生成全局唯一且递增的ID,确保了数据的一致性和准确性;同时,该算法灵活性强,可自定义各部分bit位,满足不同业务场景的需求&#…

使用html实现图片相册展示设计

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>图片&#xff08;相册&#xff09;展示设计</title><link rel"stylesheet" href"./style.css"> </head> <b…

SQL--报错注入(join无列名注入)

SQL报错注入 平时在做SQL题时&#xff0c;如果发生语法的错误时&#xff0c;就会产生报错&#xff0c;报错的信息就会显示在前端 报错注入大多是利用函数会报错的特性&#xff0c;将需要的信息通过报错信息回显出来 报错注入函数&#xff08;后面主要的还有一个floor函数暂时…

虚拟机 centos 安装后与主机 ip保持一致

1、安装时 网络模式 悬着自动检测 &#xff08;桥接&#xff09; 2、打开网络 这里如果没有打开 就去 编辑 该文件。把ONBOOTno 改为yes 后 vim /etc/sysconfig/network-scripts/ifcfg-ens160 刷新配置 systemctl restart network 再查看addr 与本机 192.168.31.xx 在同…