使用Kmeans算法完成聚类任务

 聚类任务

 聚类任务是一种无监督学习任务,其目的是将一组数据点划分成若干个类别或簇,使得同一个簇内的数据点之间的相似度尽可能高,而不同簇之间的相似度尽可能低。聚类算法可以帮助我们发现数据中的内在结构和模式,发现异常点和离群值,简化数据表示,以及为进一步的分析提供基础。聚类任务在现实世界中有很多应用场景,以下是其中的一些例子:

  1. 市场细分:聚类可以帮助将市场分成不同的细分市场,以便更好地针对消费者需求制定营销策略。

  2. 图像分析:聚类可以用于图像分析,例如将相似的图像分组。

  3. 模式识别:聚类可以用于发现数据中的模式和关系,例如在医疗领域中,可以使用聚类来发现疾病之间的关系。

  4. 推荐系统:聚类可以用于推荐系统中,以将用户分组并向他们推荐相似的产品或服务。

 K-Means算法

 K-Means是一种基于聚类的无监督机器学习算法,其目的是将一组数据点分为k个不同的簇,使得每个数据点与其所属簇的中心点(也称质心)的距离最小化。以下是K-Means的工作原理:

  1. 初始化:随机选择k个数据点作为初始质心。

  2. 分配:对每个数据点,计算其与每个质心的距离,并将其分配给距离最近的质心所代表的簇。

  3. 重新计算质心:对于每个簇,重新计算其质心位置,即将该簇中所有数据点的坐标求平均。

  4. 重复执行第2,3步,直到所有数据点的簇分配不再改变或达到预设的最大迭代次数为止。

下面是用K-Means算法完成聚类的简单Demo,下面的demo中K设置为2.

from sklearn.cluster import KMeans
import numpy as np
# create some sample data
X = np.array([[1, 2], [1, 4], [1, 0], [4, 2], [4, 4], [4, 0]])
# create a KMeans object with 2 clusters
kmeans = KMeans(n_clusters=2, random_state=0)
# fit the KMeans object to the data
kmeans.fit(X)
# print the centroids of the two clusters
print(kmeans.cluster_centers_)
# predict the cluster labels for the data points
labels = kmeans.predict(X)
# print the predicted cluster labels for the data points
print(labels)

执行结果:cluster_centers_:[[1. 2.][4. 2.]], labels:[0 0 0 1 1 1]

上面的Demo中使用到KMeans函数,KMeans函数是一种聚类分析算法,用于将数据集分成多个簇。其主要作用是将相似的数据点分到同一个簇中,同时将不同的数据点分到不同的簇中。KMeans算法通过迭代寻找最优的聚类结果,可以对数据进行分组、分类和聚类分析。该函数包含多个输入参数,各个参数含义如下:

  • n_clusters:聚类的数量(簇的个数),即K值。默认值为8。如果知道数据的实际类别数目,可以将其设置为该数目;否则,可以通过手动设置不同的聚类数量来寻找最佳解。

  • init初始化质心的方法。默认为"k-means++",表示使用一种改进的贪心算法来选取初始质心。也可以设置为随机选择初始质心的"random"方法。

  • max_iter最大迭代次数。默认值为300。当质心移动的距离小于阈值或达到最大迭代次数时,算法停止。

  • tol质心移动的阈值。默认值为1e-4。当质心移动的距离小于该阈值时,算法停止。

  • n_init随机初始化的次数。默认值为10。由于KMeans算法易受初始质心的影响,因此可以通过多次运行算法并选择最好的结果来减少随机性的影响。

  • algorithmKMeans算法实现的方式。默认为"auto",表示由算法自动选择最佳的实现方式("full"表示使用标准的KMeans算法,"elkan"表示使用改进的Elkan算法)。对于大规模数据集,建议使用"elkan"实现方式。

  上面的Demo例子是对List数据进行聚类,接下来看看如何使用K-means方法对足球队进行聚类,下面的例子中读取了csv文件中的原始数据,csv文件中存放了不同球队在三次比赛中的排名。

# coding: utf-8
from sklearn.cluster import KMeans
from sklearn import preprocessing
import pandas as pd
import numpy as np
# 输入数据
data = pd.read_csv('./kmeans/data.csv', encoding='gbk')
train_x = data[["2019年国际排名", "2018世界杯", "2015亚洲杯"]]
kmeans = KMeans(n_clusters=3)
# 规范化到[0,1]空间
min_max_scaler = preprocessing.MinMaxScaler()
train_x = min_max_scaler.fit_transform(train_x)
# kmeans算法
kmeans.fit(train_x)
predict_y = kmeans.predict(train_x)
# 合并聚类结果,插入到原数据中
result = pd.concat((data, pd.DataFrame(predict_y)), axis=1)
result.rename({0: u'聚类'}, axis=1, inplace=True)
print(result)

采用K-means方法进行聚类,假设K=3,聚类后的结果如下所示,可以看到把球队分到了0,1,2三种不同类型中。

 对图像进行聚类

  上面的例子是对数据进行聚类,下面看看如何对图像进行聚类,下面的Demo例子中将weixin登陆的图标按不同像素下的颜色分成了2类。

# -*- coding: utf-8 -*-
# 使用K-means对图像进行聚类,显示分割标识的可视化
import numpy as np
import PIL.Image as image
from sklearn.cluster import KMeans
from sklearn import preprocessing


# 加载图像,并对数据进行规范化
def load_data(filePath):
    # 读文件
    f = open(filePath, 'rb')
    data = []
    # 得到图像的像素值
    img = image.open(f)
    # 得到图像尺寸
    width, height = img.size
    for x in range(width):
        for y in range(height):
            # 得到点(x,y)的三个通道值
            c1, c2, c3 = img.getpixel((x, y))
            data.append([c1, c2, c3])
    f.close()
    # 采用Min-Max规范化
    mm = preprocessing.MinMaxScaler()
    data = mm.fit_transform(data)
    return np.asarray(data), width, height

# 加载图像,得到规范化的结果img,以及图像尺寸
img, width, height = load_data('./kmeans/weixin.jpg')

# 用K-Means对图像进行2聚类
kmeans = KMeans(n_clusters=3)
kmeans.fit(img)
label = kmeans.predict(img)
# 将图像聚类结果,转化成图像尺寸的矩阵
label = label.reshape([width, height])
# 创建个新图像pic_mark,用来保存图像聚类的结果,并设置不同的灰度值
pic_mark = image.new("L", (width, height))
for x in range(width):
    for y in range(height):
        # 根据类别设置图像灰度, 类别0 灰度值为255, 类别1 灰度值为127
        pic_mark.putpixel((x, y), int(256 / (label[x][y] + 1)) - 1)
pic_mark.save("./kmeans/weixin_mark1.jpg", "JPEG")

下图中第一张图是原图,第二张图是分类K=2的结果。可以看到,因为只进行了2种类型区分,新生成的图片中,纯白色是原图中深蓝色的代表,黑灰色是原图中白亮色的代表。说明聚类正确。

 图三是K=16的分类结果,当分类K=16时,和原图就很接近了,K=16的分类代码细节如下所示:

# -*- coding: utf-8 -*-
# 使用K-means对图像进行聚类,并显示聚类压缩后的图像
import numpy as np
import PIL.Image as image
from sklearn.cluster import KMeans
from sklearn import preprocessing
import matplotlib.image as mpimg


# 加载图像,并对数据进行规范化
def load_data(filePath):
    # 读文件
    f = open(filePath, 'rb')
    data = []
    # 得到图像的像素值
    img = image.open(f)
    # 得到图像尺寸
    width, height = img.size
    for x in range(width):
        for y in range(height):
            # 得到点(x,y)的三个通道值
            c1, c2, c3 = img.getpixel((x, y))
            data.append([(c1 + 1) / 256.0, (c2 + 1) / 256.0, (c3 + 1) / 256.0])
    f.close()
    return np.asarray(data), width, height


# 加载图像,得到规范化的结果imgData,以及图像尺寸
img, width, height = load_data('./kmeans/weixin.jpg')
# 用K-Means对图像进行16聚类
kmeans = KMeans(n_clusters=16)
label = kmeans.fit_predict(img)
# 将图像聚类结果,转化成图像尺寸的矩阵
label = label.reshape([width, height])
# 创建个新图像img,用来保存图像聚类压缩后的结果
img = image.new('RGB', (width, height))
for x in range(width):
    for y in range(height):
        c1 = kmeans.cluster_centers_[label[x, y], 0]
        c2 = kmeans.cluster_centers_[label[x, y], 1]
        c3 = kmeans.cluster_centers_[label[x, y], 2]
        img.putpixel((x, y),
                     (int(c1 * 256) - 1, int(c2 * 256) - 1, int(c3 * 256) - 1))
img.save('./kmeans/weixin_new.jpg')

    上面介绍了如何使用K-Means算法完成文本类或者图片类聚类任务,在实际项目中,K-Means算法应用非常广泛,主要应用在如下的业务场景中。

  1. 市场营销:K-Means算法可以对市场消费者进行分类,以便公司更好地了解他们的需求和行为,制定更有效的营销策略。

  2. 图像处理:K-Means算法可以用于对图像像素进行聚类,以实现图像压缩和图像分割等功能。

  3. 自然语言处理:K-Means算法可以用于对文本数据进行聚类,以实现语义分析和文本分类等功能。

  4. 生物信息学:K-Means算法可以用于对生物数据进行聚类,以实现基因分类和蛋白质分类等功能。

  5. 金融领域:K-Means算法可以用于对金融数据进行聚类,以实现风险评估和资产管理等功能。

上面提到K-Means算法可以对图像像素进行聚类,以实现图像压缩的功能,下面的例子中就采用K-Means算法对图片像素进行聚类,从而实现压缩的效果。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from PIL import Image

# 加载图片
img = Image.open('./kmeans/baby.jpg')
img_data = np.array(img)

# 将三维的图片数组变成二维的像素点数组
pixels = img_data.reshape(
    (img_data.shape[0] * img_data.shape[1], img_data.shape[2]))
# 使用K-Means聚类算法对像素点进行聚类
kmeans = KMeans(n_clusters=16, random_state=0)
labels = kmeans.fit_predict(pixels)

# 将每个像素点替换为所属聚类的中心点
new_pixels = kmeans.cluster_centers_[labels]

# 将一维的像素点数组还原为图片数组的形式
new_img_data = new_pixels.reshape(
    (img_data.shape[0], img_data.shape[1], img_data.shape[2]))

# 显示原始图片和压缩后的图片
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))
fig.suptitle('Image Compression using K-Means Clustering')

ax1.set_title('Original Image')
ax1.imshow(img_data)

ax2.set_title('Compressed Image')
ax2.imshow(new_img_data.astype('uint8'))

plt.show()

原图和压缩后的图片结果如下所示:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/49995.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

原生求生记:揭秘UniApp的原生能力限制

文章目录 1. 样式适配问题2. 性能问题3. 原生能力限制4. 插件兼容性问题5. 第三方组件库兼容性问题6. 全局变量污染7. 调试和定位问题8. 版本兼容性问题9. 前端生态限制10. 文档和支持附录:「简历必备」前后端实战项目(推荐:⭐️⭐️⭐️⭐️…

服务网格技术对比:深入比较Istio、Linkerd和Envoy等服务网格解决方案的优缺点

🌷🍁 博主 libin9iOak带您 Go to New World.✨🍁 🦄 个人主页——libin9iOak的博客🎐 🐳 《面试题大全》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~&#x1f33…

解决mysqld服务启动失败

1、进程 首先查看下mysql进程: ps -aux | grep mysql有进程号 2、所有者和所属组为mysql 查看/usr/local/MySQL/data/mysqld.pid所有者和所属组是否为mysql 原来是权限有问题,那么更改权限(还需要加权限)3、 重新启动服务

Kubernetes.Service—使用源 IP

使用源 IP 运行在 Kubernetes 集群中的应用程序通过 Service 抽象发现彼此并相互通信,它们也用 Service 与外部世界通信。 本文解释了发送到不同类型 Service 的数据包的源 IP 会发生什么情况,以及如何根据需要切换此行为。 准备开始 术语表 本文使用…

阿里云盘自动每日签到无需部署无需服务器(仅限学习交流使用)

一、前言 阿里云盘自动每日签到,无需部署,无需服务器 执行思路:使用金山文档的每日定时任务,执行阿里云盘签到接口。 二、效果展示: 三、步骤: 1、进入金山文档网页版 金山文档官网:https:…

EXCEL数据自动web网页查询----高效工作,做个监工

目的 自动将excel将数据填充到web网页,将反馈的数据粘贴到excel表 准备 24KB的鼠标连点器软件(文末附链接)、Excel 宏模块 优势 不需要编程、web验证、爬虫等风险提示。轻量、稳定、安全。 缺点 效率没那么快 演示 宏环境 ht…

QT第四讲

思维导图 基于QT的网络聊天室 widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include<QTcpServer> //服务器类 #include<QTcpSocket> //客户端类 #include<QMessageBox> //对话框类 #include<QList…

【Terraform学习】Terraform-AWS部署快速入门(快速入门)

Terraform-AWS部署快速入门 实验步骤 连接到 Terraform 环境 SSH 连接到Terraform 环境(名为MyEC2Instance的实例) 在 Amazon Web Services &#xff08;AWS&#xff09; 上预置 EC2 实例 用于描述 Terraform 中基础结构的文件集称为 Terraform 配置。您将编写一个配置来定义…

R-并行计算

本文介绍在计算机多核上通过parallel包进行并行计算。 并行计算运算步骤&#xff1a; 加载并行计算包&#xff0c;如library(parallel)。创建几个“workers”,通常一个workers一个核&#xff08;core&#xff09;&#xff1b;这些workers什么都不知道&#xff0c;它们的全局环…

【雕爷学编程】MicroPython动手做(10)——零基础学MaixPy之神经网络KPU2

KPU的基础架构 让我们回顾下经典神经网络的基础运算操作&#xff1a; 卷积&#xff08;Convolution&#xff09;:1x1卷积&#xff0c;3x3卷积&#xff0c;5x5及更高的卷积 批归一化&#xff08;Batch Normalization&#xff09; 激活&#xff08;Activate&#xff09; 池化&…

Meta-Transformer 多模态学习的统一框架

Meta-Transformer是一个用于多模态学习的新框架&#xff0c;用来处理和关联来自多种模态的信息&#xff0c;如自然语言、图像、点云、音频、视频、时间序列和表格数据&#xff0c;虽然各种数据之间存在固有的差距&#xff0c;但是Meta-Transformer利用冻结编码器从共享标记空间…

14:00面试,14:06就出来了,问的问题有点变态。。。

从小厂出来&#xff0c;没想到在另一家公司又寄了。 到这家公司开始上班&#xff0c;加班是每天必不可少的&#xff0c;看在钱给的比较多的份上&#xff0c;就不太计较了。没想到5月一纸通知&#xff0c;所有人不准加班&#xff0c;加班费不仅没有了&#xff0c;薪资还要降40%,…

音视频——封装格式原理

视频解码基础 一、封裝格式 ​ 我们播放的视频文件一般都是用一种封装格式封装起来的&#xff0c;封装格式的作用是什么呢&#xff1f;一般视频文件里不光有视频&#xff0c;还有音频&#xff0c;封装格式的作用就是把视频和音频打包起来。 所以我们先要解封装格式&#xff0…

【C语言day07】

在调用函数的时候&#xff0c;真实传递给函数的是实参&#xff0c;函数定义部分函数名后的参数是形参。 形参和实参的名字是可以相同的&#xff0c;在函数调用的时候&#xff0c;形参是实参的一份临时拷贝&#xff0c;分别占用不同的内存空间&#xff0c;所以A正确&#xff0c;…

使用CRM分析数据有哪些功能?

CRM数据分析软件可以帮助企业增强竞争力&#xff0c;并更好地了解客户需求及市场变化&#xff0c;助力企业数据分析&#xff0c;并提供实时更新的数据和分析结果&#xff0c;CRM数据分析软件的主要特点是什么&#xff1f;包括以下6个特点。 CRM数据分析软件的主要功能通常包括…

SpringBoot入门

目录 一、创建项目 二、项目结构 三、起步依赖 四、简单请求接口 控制类 1、无参数 2、简单参数 3、实体参数 4、数组集合参数 5、json参数 五、统一响应结果 result.java HelloResponse.java 测试结果 一、创建项目 Spring官方骨架&#xff0c;可以理解为Sprin…

home-assistant整合sso

其他软件都可以通过nginx直接做代理添加鉴权&#xff0c;但是这个hass果然是用户安全隐私很强&#xff0c;做代理需要配置白名单&#xff0c;而且支持的三方鉴权都不太适合我的需求&#xff0c;非要改源码才行&#xff0c;后来我发现不用改源码的折中方式 参考文章 External …

通过两种实现方式理解CANoe TC8 demo是如何判断接收的以太网报文里的字段的

假设有一个测试用例,需求是:编写一个测试用例,发送一条icmpv4 echo request报文给DUT,identifier字段设置为10。判断DUT能够回复icmpv4 echo reply报文,且identifier字段值为10。 实现:在canoe的simulation setup界面插入一个test节点,ip地址为:192.168.0.1,mac地址为…

33. 本地记事本

本地记事本 html部分 <button class"add"><i class"iconfont icon-jiahao"></i> </button>css部分 *{margin: 0;padding: 0; } body{background-color: #7bdaf3;display: flex;padding-top: 3rem;flex-wrap: wrap; } .add{pos…

基于springboot+mybatis +mysql+jsp图书管理系统

基于springbootmybatis mysqljsp图书管理系统 一、系统介绍二、功能展示1.用户登陆2.用户注册3.图书借阅(学生)4.我的借阅&#xff08;学生&#xff09;5.图书管理&#xff08;管理员&#xff09;6.用户管理&#xff08;管理员&#xff09;7.借阅信息&#xff08;管理员&#x…