图技术在 LLM 下的应用:知识图谱驱动的大语言模型 Llama Index

LLM 如火如荼地发展了大半年,各类大模型和相关框架也逐步成型,可被大家应用到业务实际中。在这个过程中,我们可能会遇到一类问题是:现有的哪些数据,如何更好地与 LLM 对接上。像是大家都在用的知识图谱,现在的图谱该如何借助大模型,发挥更大的价值呢?

在本文,我便会和大家分享下如何利用知识图谱构建更好的 In-context Learning 大语言模型应用。

此文最初以英文撰写的,而后我麻烦 ChatGPT 帮我翻译成了英文。下面是翻译的 prompt:

“In this thread, you are a Chinese Tech blogger to help translate my blog in markdown from English into Chinese, the blog style is clear, fun yet professional. I will paste chapters in markdown to you and you will send back the translated and polished version.”

LLM 应用的范式

作为认知智能的一大突破,LLM 已经改变了许多行业,以一种我们没有预料到的方式进行自动化、加速和启用。我们每天都会看到新的 LLN 应用被创建出来,我们仍然在探索如何利用这种魔力的新方法和用例。

将 LLM 引入流程的最典型模式之一,是要求 LLM 根据专有的/特定领域的知识理解事物。目前,我们可以向 LLM 添加两种范式以获取这些知识:微调——fine-tune上下文学习—— in-context learning

微调是指对 LLM 模型进行附加训练,以增加额外的知识;而上下文学习是在查询提示中添加一些额外的知识。

据观察,目前由于上下文学习比微调更简单,所以上下文学习比微调更受欢迎,在这篇论文中讲述了这一现象:https://arxiv.org/abs/2305.16938。

下面,我来分享 NebulaGraph 在上下文学习方法方面所做的工作。

Llama Index:数据与 LLM 之间的接口

上下文学习

上下文学习的基本思想是使用现有的 LLM(未更新)来处理特定知识数据集的特殊任务

例如,要构建一个可以回答关于某个人的任何问题,甚至扮演一个人的数字化化身的应用程序,我们可以将上下文学习应用于一本自传书籍和 LLM。在实践中,应用程序将使用用户的问题和从书中"搜索"到的一些信息构建提示,然后查询 LLM 来获取答案。

┌───────┐         ┌─────────────────┐         ┌─────────┐
│       │         │ Docs/Knowledge  │         │         │
│       │         └─────────────────┘         │         │
│ User  │─────────────────────────────────────▶   LLM   │
│       │                                     │         │
│       │                                     │         │
└───────┘                                     └─────────┘

在这种搜索方法中,实现从文档/知识(上述示例中的那本书)中获取与特定任务相关信息的最有效方式之一是利用嵌入(Embedding)。

嵌入(Embedding)

嵌入通常指的是将现实世界的事物映射到多维空间中的向量的方法。例如,我们可以将图像映射到一个(64 x 64)维度的空间中,如果映射足够好,两个图像之间的距离可以反映它们的相似性。

嵌入的另一个例子是 word2vec 算法,它将每个单词都映射到一个向量中。例如,如果嵌入足够好,我们可以对它们进行加法和减法操作,可能会得到以下结果:

vec(apple) + vec(pie) ≈ vec("apple apie"),或者向量测量值 vec(apple) + vec(pie) - vec("apple apie") 趋近于 0:

|vec(apple) + vec(pie) - vec("apple apie")| ≈ 0

类似地,“pear” 应该比 “dinosaur” 更接近 “apple”:|vec(apple) - vec(pear)| < |vec(apple) - vec(dinosaur)|

有了这个基础,理论上我们可以搜索与给定问题更相关的书籍片段。基本过程如下:

  • 将书籍分割为小片段,为每个片段创建嵌入并存储它们
  • 当有一个问题时,计算问题的嵌入
  • 通过计算距离找到与书籍片段最相似的前 K 个嵌入
  • 使用问题和书籍片段构建提示
  • 使用提示查询 LLM
                  ┌────┬────┬────┬────┐                  
                  │ 1  │ 2  │ 3  │ 4  │                  
                  ├────┴────┴────┴────┤                  
                  │  Docs/Knowledge   │                  
┌───────┐         │        ...        │       ┌─────────┐
│       │         ├────┬────┬────┬────┤       │         │
│       │         │ 95 │ 96 │    │    │       │         │
│       │         └────┴────┴────┴────┘       │         │
│ User  │─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─▶   LLM   │
│       │                                     │         │
│       │                                     │         │
└───────┘    ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐  └─────────┘
    │          ┌──────────────────────────┐        ▲     
    └────────┼▶│  Tell me ....., please   │├───────┘     
               └──────────────────────────┘              
             │ ┌────┐ ┌────┐               │             
               │ 3  │ │ 96 │                             
             │ └────┘ └────┘               │             
              ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ 

Llama Index

Llama Index 是一个开源工具包,它能帮助我们以最佳实践去做 in-context learning:

  • 它提供了各种数据加载器,以统一格式序列化文档/知识,例如 PDF、维基百科、Notion、Twitter 等等,这样我们可以无需自行处理预处理、将数据分割为片段等操作。
  • 它还可以帮助我们创建嵌入(以及其他形式的索引),并以一行代码的方式在内存中或向量数据库中存储嵌入。
  • 它内置了提示和其他工程实现,因此我们无需从头开始创建和研究,例如,《用 4 行代码在现有数据上创建一个聊天机器人》。

文档分割和嵌入的问题

嵌入和向量搜索在许多情况下效果良好,但在某些情况下仍存在挑战,比如:丢失全局上下文/跨节点上下文。

想象一下,当查询"请告诉我关于作者和 foo 的事情",在这本书中,假设编号为 1、3、6、19-25、30-44 和 96-99 的分段都涉及到 foo 这个主题。那么,在这种情况下,简单地搜索与书籍片段相关的前 k 个嵌入可能效果不尽人意,因为这时候只考虑与之最相关的几个片段(比如 k = 3),会丢失了许多上下文信息。

┌────┬────┬────┬────┐
│ 1  │ 2  │ 3  │ 4  │
├────┴────┴────┴────┤
│  Docs/Knowledge   │
│        ...        │
├────┬────┬────┬────┤
│ 95 │ 96 │    │    │
└────┴────┴────┴────┘

而解决、缓解这个问题的方法,在 Llama Index 工具的语境下,可以创建组合索引和综合索引。

其中,向量存储(VectorStore)只是其中的一部分。除此之外,我们可以定义一个摘要索引、树形索引等,以将不同类型的问题路由到不同的索引,从而避免在需要全局上下文时错失它。

然而,借助知识图谱,我们可以采取更有意思的方法:

知识图谱

知识图谱这个术语最初由谷歌在 2012 年 5 月提出,作为其增强搜索结果,向用户提供更多上下文信息的一部分实践。知识图谱旨在理解实体之间的关系,并直接提供查询的答案,而不仅仅返回相关网页的列表。

知识图谱是一种以图结构形式组织和连接信息的方式,其中节点表示实体,边表示实体之间的关系。图结构允许用户高效地存储、检索和分析数据。

它的结构如下图所示:

现在问题就来了,上面说过知识图谱能帮忙搞定文档分割和嵌入的问题。那么,知识图谱到底能怎么帮到我们呢?

嵌入和知识图谱的结合

这里的基本实现思想是,作为信息的精炼格式,知识图谱可切割的数据颗粒度比我们人工的分割的更细、更小。将知识图谱的小颗粒数据与原先人工处理的大块数据相结合,我们可以更好地搜索需要全局/跨节点上下文的查询。

下面来做个题:请看下面的图示,假设提问同 x 有关,所有数据片段中有 20 个与 x 高度相关。现在,除了获取主要上下文的前 3 个文档片段(比如编号为 1、2 和 96 的文档片段),我们还从知识图谱中对 x 进行两次跳转查询,那么完整的上下文将包括:

  • 问题:“Tell me things about the author and x”
  • 来自文档片段编号 1、2 和 96 的原始文档。在 Llama Index 中,它们被称为节点 1、节点 2 和节点 96。
  • 包含 “x” 的知识图谱中的 10 个三元组,通过对 x 进行两层深度的图遍历得到:
    • x -> y(来自节点 1)
    • x -> a(来自节点 2)
    • x -> m(来自节点 4
    • x <- b-> c(来自节点 95
    • x -> d(来自节点 96)
    • n -> x(来自节点 98
    • x <- z <- i(来自节点 1 和节点 3
    • x <- z <- b(来自节点 1 和节点 95
┌──────────────────┬──────────────────┬──────────────────┬──────────────────┐
│ .─.       .─.    │  .─.       .─.   │            .─.   │  .─.       .─.   │
│( x )─────▶ y )   │ ( x )─────▶ a )  │           ( j )  │ ( m )◀────( x )  │
│ `▲'       `─'    │  `─'       `─'   │            `─'   │  `─'       `─'   │
│  │     1         │        2         │        3    │    │        4         │
│ .─.              │                  │            .▼.   │                  │
│( z )◀────────────┼──────────────────┼───────────( i )─┐│                  │
│ `◀────┐          │                  │            `─'  ││                  │
├───────┼──────────┴──────────────────┴─────────────────┼┴──────────────────┤
│       │                      Docs/Knowledge           │                   │
│       │                            ...                │                   │
│       │                                               │                   │
├───────┼──────────┬──────────────────┬─────────────────┼┬──────────────────┤
│  .─.  └──────.   │  .─.             │                 ││  .─.             │
│ ( x ◀─────( b )  │ ( x )            │                 └┼▶( n )            │
│  `─'       `─'   │  `─'             │                  │  `─'             │
│        95   │    │   │    96        │                  │   │    98        │
│            .▼.   │  .▼.             │                  │   ▼              │
│           ( c )  │ ( d )            │                  │  .─.             │
│            `─'   │  `─'             │                  │ ( x )            │
└──────────────────┴──────────────────┴──────────────────┴──`─'─────────────┘

显然,那些(可能很宝贵的)涉及到主题 x 的精炼信息来自于其他节点以及跨节点的信息,都因为我们引入知识图谱,而能够被包含在 prompt 中,用于进行上下文学习,从而克服了前面提到的问题。

Llama Index 中的知识图谱进展

最初,William F.H.将知识图谱的抽象概念引入了 Llama Index,其中知识图谱中的三元组与关键词相关联,并存储在内存中的文档中,随后Logan Markewich还增加了每个三元组的嵌入。

最近的几周中,我一直在与 Llama Index 社区合作,致力于将 “GraphStore” 存储上下文引入 Llama Index,从而引入了知识图谱的外部存储。首个知识图谱的外部存储是对接开源分布式图数据库 NebulaGraph,目前在我的努力下已经实现了。

在实现过程中,还引入了遍历图的多个跳数选项以及在前 k 个节点中收集更多关键实体的选项,用于在知识图谱中搜索以获得更多全局上下文。上面提到的这些变更还在陆续完善中。

在大模型中引入 GraphStore 后,还可以从现有的知识图谱中进行上下文学习,并与其他索引结合使用,这也非常有前景。因为知识图谱被认为具有比其他结构化数据更高的信息密度。

本文作为开篇,讲述了一些知识图谱和 LLM 的关系。在后续的文章中,将会偏向实操同大家分享具体的知识图谱和 LLM 的应用实践。

谢谢你读完本文 (///▽///)

欢迎前往 GitHub 来阅读 NebulaGraph 源码,或是尝试用它解决你的业务问题 yo~ GitHub 地址:https://github.com/vesoft-inc/nebula 想要交流图技术和其他想法,请前往论坛:https://discuss.nebula-graph.com.cn/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/49904.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

web APIs-练习一

轮播图点击切换&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta http-equiv"X-UA-Compatible" content"IEedge" /><meta name"viewport" content"…

浅谈自动化测试

谈谈那些实习测试工程师应该掌握的基础知识&#xff08;一&#xff09;_什么时候才能变强的博客-CSDN博客https://blog.csdn.net/qq_17496235/article/details/131839453谈谈那些实习测试工程师应该掌握的基础知识&#xff08;二&#xff09;_什么时候才能变强的博客-CSDN博客h…

无涯教程-jQuery - Puff方法函数

吹气效果可以与show/hide/toggle一起使用。通过按比例放大元素并同时隐藏它&#xff0c;可以形成粉扑效果。 Puff - 语法 selector.hide|show|toggle( "puff", {arguments}, speed ); 这是所有参数的描述- model - 效果的模式。可以是"显…

【项目】轻量级HTTP服务器

文章目录 一、项目介绍二、前置知识2.1 URI、URL、URN2.2 CGI2.2.1 CGI的概念2.2.2 CGI模式的实现2.2.3 CGI的意义 三、项目设计3.1 日志的编写3.2 套接字编写3.3 HTTP服务器实现3.4 HTTP请求与响应结构3.5 EndPoint类的实现3.5.1 EndPoint的基本逻辑3.5.2 读取请求3.5.3 构建响…

iOS开发-聊天emoji表情与自定义动图表情左右滑动控件

iOS开发-聊天emoji表情与自定义动图表情左右滑动控件 之前开发中遇到需要实现聊天emoji表情与自定义动图表情左右滑动控件。使用UICollectionView实现。 一、效果图 二、实现代码 UICollectionView是一种类似于UITableView但又比UITableView功能更强大、更灵活的视图&#x…

Debian9离线安装docker

1. 前言 在服务器禁止外网访问的情况下&#xff0c;无法通过apt-get install安装docker&#xff0c;使得docker安装变得异常曲折 本地下载安装包&#xff0c;scp到服务器通过dpkg -i 手动安装&#xff0c;启动docker服务失败… … 各种坑&#xff0c;猛男也要落泪 &#x1f92…

招商银行秋招攻略和考试内容详解

招商银行秋招简介 招商银行是一家股份制商业银行&#xff0c;银行的服务理念已经深入人心&#xff0c;在社会竞争愈来愈烈的今天&#xff0c;招商银行的招牌无疑是个香饽饽&#xff0c;很多人也慕名而至&#xff0c;纷纷向招商银行投出了简历。那么秋招银行的秋招开始时间是多…

VMware虚拟机安装VMware tools

一、挂载光驱 执行以下命令来创建 /mnt/cdrom 目录&#xff1a; mkdir -p /mnt/cdrom-p 参数会确保如果 /mnt/cdrom 的上级目录&#xff08;例如 /mnt&#xff09;不存在的话也会被创建。 然后&#xff0c;你可以再次尝试挂载光盘&#xff1a; mount /dev/sr0 /mnt/cdrom这次…

面试手写实现Promise.all

目录 前言常见面试手写系列Promise.resolve 简要回顾源码实现Promise.reject 简要回顾源码实现Promise.all 简要回顾源码实现Promise.allSettled 简要回顾源码实现Promise.race 简单回顾源码实现结尾 前言 (?﹏?)曾经真实发生在一个朋友身上的真实事件&#xff0c;面试官让…

flink采用thrift读取tablets一个天坑

原先的配置 [INFO] StarRocksSourceBeReader [open Scan params.mem_limit 8589934592 B] [INFO] StarRocksSourceBeReader [open Scan params.query-timeout-s 600 s] [INFO] StarRocksSourceBeReader [open Scan params.keep-alive-min 100 min] [INFO] StarRocksSourceBeRea…

软件外包开发测试管理工具

测试是软件工程中非常重要的一个环节&#xff0c;在上线前必须需要经过严格的测试才能确保上线后软件系统长时间运行。有大量的软件开发和测试管理工具&#xff0c;每一个工具都有自己的特点&#xff0c;今天和大家分享一些常见的工具&#xff0c;希望对大家有所帮助。北京木奇…

MySQL中锁的简介——行级锁之 间隙锁 和 临键锁

1.间隙锁演示 2.临键锁演示 间隙锁锁住的是间隙&#xff0c;不包含对应的数据记录&#xff0c;而临键锁既会包含当前这条数据记录&#xff0c;也会锁定该数据记录之前的间隙。间隙锁的目的是防止其他事务插入间隙造成幻读现象。间隙锁是可以共存的&#xff0c;一个事务采用的间…

Redhat7/CentOS7 网络配置与管理(nmtui、nmcli、GNOME GUI、ifcfg文件、IP命令)

背景&#xff1a;作为系统管理员&#xff0c;需要经常处理主机网络问题&#xff0c;而配置与管理网络的方法和工具也有好几种&#xff0c;这里整理分享一下网络配置与管理的几种方式。 1、NetworkManager 概述 在 Red Hat Enterprise Linux 7 中&#xff0c;默认网络服务由 N…

python爬虫-加速乐cookie混淆解析实例小记

注意&#xff01;&#xff01;&#xff01;&#xff01;某XX网站逆向实例仅作为学习案例&#xff0c;禁止其他个人以及团体做谋利用途&#xff01;&#xff01;&#xff01; 第一步&#xff1a;抓包工具第一次请求页面&#xff0c;得到响应。本次我使用的fiddle进行抓包&#…

通讯录--集合动态的文件版

简易的通讯录往往需要朴实的“烹饪”就能完成一道“美味的佳肴”。 我们需要一个通讯录&#xff0c;能够存储联系人的信息&#xff0c;能够对联系人的信息进行增删查改&#xff0c;查询&#xff0c;按姓名排序。相比对之前的三子棋、扫雷&#xff0c;有了一定的了解&#xff0c…

flutter:BottomNavigationBar和TabBar

区别 BottomNavigationBarr和TabBar都是用于创建导航栏的组件&#xff0c;但它们有一些区别。 位置不同&#xff1a;BottomNavigationBar通常位于屏幕底部&#xff0c;用于主要导航&#xff1b;而TabBar通常位于屏幕顶部或底部&#xff0c;用于切换不同的视图或页面。 样式不…

[Ubuntu 22.04] containerd配置HTTP方式拉取私仓Harbor

文章目录 1. 基础环境配置2. Docker安装3. 部署Harbor&#xff0c;HTTP访问4. 部署ContainerD5. 修改docker配置文件&#xff0c;向harbor中推入镜像6. 配置containerd6.1. 拉取镜像验证6.2. 推送镜像验证 1. 基础环境配置 [Ubuntu 22.04] 安装K8S基础环境准备脚本 2. Docker安…

2023秋招面试题持续更新中。。。

目录 1.八股文渐进式MVVM三次握手&#xff0c;四次挥手viteajax组件化和模块化虚拟dom原理流程浏览器内核浏览器渲染过程回流和重绘nextTick 2.项目相关1.声明式导航和编程式导航重写push和replace方法&#xff1a;性能优化图片懒加载路由懒加载 http请求方式 1.八股文 渐进式…

shell中按照特定字符分割字符串,并且在切分后的每段内容后加上特定字符(串),然后再用特定字符拼接起来

文件中的内容&#xff0c;可以这么写&#xff1a; awk -F, -v OFS, {for(i1;i<‌NF;i){$i$i"_suffix"}}1 input.txt-F,&#xff1a;设置输入字段分隔符为逗号&#xff08;,&#xff09;&#xff0c;这将使awk按照逗号分割输入文本。-v OFS‘,’&#xff1a;设置输…

MyBatis源码分析_ResultSetHandler(7)

目录 1. 传统JDBC 2. Mybatis访问数据库 2.1 Statement访问数据库 2.2 火枪手 ResultSetHandler 出现 3. ResultSetHandler处理结果集 3.1 首先就是进入 handleResultSets 方法 3.2 handleResultSet 方法根据映射规则&#xff08;resultMap&#xff09;对结果集进行转化…