信号处理--情绪分类数据集DEAP预处理(python版)

关于

DEAP数据集是一个常用的情绪分类公共数据,在日常研究中经常被使用到。如何合理地预处理DEAP数据集,对于后端任务的成功与否,非常重要。本文主要介绍DEAP数据集的预处理流程。

工具

 图片来源:DEAP: A Dataset for Emotion Analysis using Physiological and Audiovisual Signals

 DEAP数据集详细描述:https://www.eecs.qmul.ac.uk/mmv/datasets/deap/doc/tac_special_issue_2011.pdf

方法实现

加载.bdf文件+去除非脑电通道
	bdf_file_name = 's{:02d}.bdf'.format(subject_id)
	bdf_file_path = os.path.join(root_folder, bdf_file_name)
	
	print('Loading .bdf file {}'.format(bdf_file_path))
	raw = mne.io.read_raw_bdf(bdf_file_path, preload=True, verbose=False).load_data()
	ch_names = raw.ch_names
	eeg_channels = ch_names[:N_EEG_electrodes]
	non_eeg_channels = ch_names[N_EEG_electrodes:]
	stim_ch_name = ch_names[-1]
	stim_channels = [ stim_ch_name ]
设置脑电电极规范
raw_copy = raw.copy()
	raw_stim = raw_copy.pick_channels(stim_channels)
	raw.pick_channels(eeg_channels)
	print('Setting montage with BioSemi32 electrode locations')
	biosemi_montage = mne.channels.make_standard_montage(kind='biosemi32', head_size=0.095)
	raw.set_montage(biosemi_montage)
带通滤波器(4-45Hz),陷波滤波器(50Hz)
	print('Applying notch filter (50Hz) and bandpass filter (4-45Hz)')
	raw.notch_filter(np.arange(50, 251, 50), n_jobs=1, fir_design='firwin')
	raw.filter(4, 45, fir_design='firwin')
脑电通道相对于均值重标定
	# Average reference. This is normally added by default, but can also be added explicitly.
	print('Re-referencing all electrodes to the common average reference')
	raw.set_eeg_reference()
获取事件标签
print('Getting events from the status channel')
	events = mne.find_events(raw_stim, stim_channel=stim_ch_name, verbose=True)
	if subject_id<=23:
		# Subject 1-22 and Subjects 23-28 have 48 channels.
		# Subjects 29-32 have 49 channels.
		# For Subjects 1-22 and Subject 23, the stimuli channel has the name 'Status'
		# For Subjects 24-28, the stimuli channel has the name ''
		# For Subjects 29-32, the stimuli channels have the names '-0' and '-1'
		pass
	else:
		# The values of the stimuli channel have to be changed for Subjects 24-32
		# Trigger channel has a non-zero initial value of 1703680 (consider using initial_event=True to detect this event)
		events[:,2] -= 1703680 # subtracting initial value
		events[:,2] = events[:,2] % 65536 # getting modulo with 65536
	
	print('')
	event_IDs = np.unique(events[:,2])
	for event_id in event_IDs:
		col = events[:,2]
		print('Event ID {} : {:05}'.format(event_id, np.sum( 1.0*(col==event_id) ) ) )
获取事件对应信号
inds_new_trial = np.where(events[:,2] == 4)[0]
	events_new_trial = events[inds_new_trial,:]
	baseline = (0, 0)
	print('Epoching the data, into [-5sec, +60sec] epochs')
	epochs = mne.Epochs(raw, events_new_trial, event_id=4, tmin=-5.0, tmax=60.0, picks=eeg_channels, baseline=baseline, preload=True)
ICA去除伪迹
print('Fitting ICA to the epoched data, using {} ICA components'.format(N_ICA))
	ica = ICA(n_components=N_ICA, method='fastica', random_state=23)
	ica.fit(epochs)
	ICA_model_file = os.path.join(ICA_models_folder, 's{:02}_ICA_model.pkl'.format(subject_id))
	with open(ICA_model_file, 'wb') as pkl_file:
		pickle.dump(ica, pkl_file)
	# ica.plot_sources(epochs)
	print('Plotting ICA components')
	fig = ica.plot_components()
	cnt = 1
	for fig_x in fig:
		print(fig_x)
		fig_ICA_path = os.path.join(ICA_components_folder, 's{:02}_ICA_components_{}.png'.format(subject_id, cnt))
		fig_x.savefig(fig_ICA_path)
		cnt += 1
	# Inspect frontal channels to check artifact removal 
	# ica.plot_overlay(raw, picks=['Fp1'])
	# ica.plot_overlay(raw, picks=['Fp2'])
	# ica.plot_overlay(raw, picks=['AF3'])
	# ica.plot_overlay(raw, picks=['AF4'])
	N_excluded_channels = len(ica.exclude)
	print('Excluding {:02} ICA component(s): {}'.format(N_excluded_channels, ica.exclude))
	epochs_clean = ica.apply(epochs.copy())

	#############################

	print('Plotting PSD of epoched data')
	fig = epochs_clean.plot_psd(fmin=4, fmax=45, area_mode='range', average=False, picks=eeg_channels, spatial_colors=True)
	fig_PSD_path = os.path.join(PSD_folder, 's{:02}_PSD.png'.format(subject_id))
	fig.savefig(fig_PSD_path)

	print('Saving ICA epoched data as .pkl file')
	mneraw_pkl_path = os.path.join(mneraw_as_pkl_folder, 's{:02}.pkl'.format(subject_id))
	with open(mneraw_pkl_path, 'wb') as pkl_file:
		pickle.dump(epochs_clean, pkl_file)

	epochs_clean_copy = epochs_clean.copy()
数据降采样和保存
print('Downsampling epoched data to 128Hz')
	epochs_clean_downsampled = epochs_clean_copy.resample(sfreq=128.0)

	print('Plotting PSD of epoched downsampled data')
	fig = epochs_clean_downsampled.plot_psd(fmin=4, fmax=45, area_mode='range', average=False, picks=eeg_channels, spatial_colors=True)
	fig_PSD_path = os.path.join(PSD_folder, 's{:02}_PSD_downsampled.png'.format(subject_id))
	fig.savefig(fig_PSD_path)

	data = epochs_clean.get_data()
	data_downsampled = epochs_clean_downsampled.get_data()
	print('Original epoched data shape: {}'.format(data.shape))
	print('Downsampled epoched data shape: {}'.format(data_downsampled.shape))
	
	###########################################
	
	EEG_channels_table = pd.read_excel(DEAP_EEG_channels_xlsx_path)
	EEG_channels_geneva = EEG_channels_table['Channel_name_Geneva'].values
	channel_pick_indices = []
	print('\nPreparing EEG channel reordering to comply with the Geneva order')
	for (geneva_ch_index, geneva_ch_name) in zip(range(N_EEG_electrodes), EEG_channels_geneva):
		bdf_ch_index = eeg_channels.index(geneva_ch_name)
		channel_pick_indices.append(bdf_ch_index)
		print('Picking source (raw) channel #{:02} to fill target (npy) channel #{:02} | Electrode position: {}'.format(bdf_ch_index + 1, geneva_ch_index + 1, geneva_ch_name))

	ratings = pd.read_csv(ratings_csv_path)
	is_subject =  (ratings['Participant_id'] == subject_id)
	ratings_subj = ratings[is_subject]
	trial_pick_indices = []
	print('\nPreparing EEG trial reordering, from presentation order, to video (Experiment_id) order')
	for i in range(N_trials):
		exp_id = i+1
		is_exp = (ratings['Experiment_id'] == exp_id)
		trial_id = ratings_subj[is_exp]['Trial'].values[0]
		trial_pick_indices.append(trial_id - 1)
		print('Picking source (raw) trial #{:02} to fill target (npy) trial #{:02} | Experiment_id: {:02}'.format(trial_id, exp_id, exp_id))
	
	# Store clean and reordered data to numpy array
	epoch_duration = data_downsampled.shape[-1]
	data_npy = np.zeros((N_trials, N_EEG_electrodes, epoch_duration))
	print('\nStoring the final EEG data in a numpy array of shape {}'.format(data_npy.shape))
	for trial_source, trial_target in zip(trial_pick_indices, range(N_trials)):
		data_trial = data_downsampled[trial_source]
		data_trial_reordered_channels = data_trial[channel_pick_indices,:]
		data_npy[trial_target,:,:] = data_trial_reordered_channels.copy()
	print('Saving the final EEG data in a .npy file')
	np.save(npy_path, data_npy)
	
	print('Raw EEG has been filtered, common average referenced, epoched, artifact-rejected, downsampled, trial-reordered and channel-reordered.')
	print('Finished.')

图片来源: Blog - Ayan's Blog

代码获取

后台私信,请注明文章名称;

相关项目和代码问题,欢迎交流。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/494775.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何备考2025年AMC8竞赛?吃透2000-2024年600道真题(免费送题

最近有家长朋友问我&#xff0c;现在有哪些类似于奥数的比赛可以参加&#xff1f;我的建议可以关注下AMC8的竞赛&#xff0c;类似于国内的奥数&#xff0c;但是其难度要比国内的奥数低一些&#xff0c;而且比赛门槛更低&#xff0c;考试也更方便。比赛的题目尤其是应用题比较有…

肿瘤靶向肽 iRGD peptide环肽 1392278-76-0 c(CRGDKGPDC)

RGD环肽 c(CRGDKGPDC)&#xff0c;iRGD peptide 1392278-76-0 结 构 式&#xff1a; H2N-CRGDKGPDC-OH(Disulfide Bridge:C1-C9) H2N-Cys-Arg-Gly-Asp-Lys-Gly-Pro-Asp-Cys-COOH(Disulfide Bridge:Cys1-Cys9) 氨基酸个数&#xff1a; 9 C35H57N13O14S2 平均分子量:…

聊聊低代码产品的应用场景

随着数字化转型的不断深入&#xff0c;企业对于快速开发和迭代软件应用的需求也越来越迫切。而在这样的背景下&#xff0c;低代码产品应运而生&#xff0c;成为了一种热门的技术解决方案。本文将解读低代码产品的定义并探讨其应用场景。 一、低代码产品的定义 低代码产品是一种…

企业计算机服务器中了rmallox勒索病毒怎么办,rmallox勒索病毒解密流程步骤

在网络技术飞速发展的时代&#xff0c;越来越多的企业离不开网络办公&#xff0c;通过网络开展各项工作业务成为企业的常态&#xff0c;这也被国外众多黑客组织盯上的原因&#xff0c;近期&#xff0c;网络勒索病毒攻击的事件频发&#xff0c;越来越多的企业开始重视企业数据安…

Rust语言中Regex正则表达式,匹配和查找替换等

官方仓库&#xff1a;https://crates.io/crates/regex 文档地址&#xff1a;regex - Rust github仓库地址&#xff1a;GitHub - rust-lang/regex: An implementation of regular expressions for Rust. This implementation uses finite automata and guarantees linear tim…

leetcode:2138. 将字符串拆分为若干长度为 k 的组(python3解法)

难度&#xff1a;简单 字符串 s 可以按下述步骤划分为若干长度为 k 的组&#xff1a; 第一组由字符串中的前 k 个字符组成&#xff0c;第二组由接下来的 k 个字符串组成&#xff0c;依此类推。每个字符都能够成为 某一个 组的一部分。对于最后一组&#xff0c;如果字符串剩下的…

【SAP2000】在框架结构中应用分布式面板荷载Applying Distributed Panel Loads to Frame Structures

在框架结构中应用分布式面板荷载 Applying Distributed Panel Loads to Frame Structures 使用"Uniform to Frame"选项,可以简单地将荷载用于更多样化的情况。 With the “Uniform to Frame” option, loads can be easily used for a greater diversity of situat…

如何高效阅读嵌入式代码

大家好&#xff0c;今天给大家介绍如何高效阅读嵌入式代码&#xff0c;文章末尾附有分享大家一个资料包&#xff0c;差不多150多G。里面学习内容、面经、项目都比较新也比较全&#xff01;可进群免费领取。 高效阅读嵌入式代码需要一些技巧和实践经验。以下是一些建议&#xff…

Sublime 彻底解决中文乱码

1. 按ctrl&#xff0c;打开Console&#xff0c;输入如下代码&#xff1a; import urllib.request,os; pf Package Control.sublime-package; ipp sublime.installed_packages_path(); urllib.request.install_opener( urllib.request.build_opener( urllib.request.ProxyHand…

excel统计分析——单向分组资料的协方差分析

参考资料&#xff1a;生物统计学 单向分组资料是具有一个协变量的单因素方差分析资料。 操作案例如下&#xff1a; 1、对x和y进行方差分析 由方差分析表可知&#xff1a;4种处理间&#xff0c;x存在显著差异&#xff0c;而y在处理间差异不显著。需要进行协方差分析&#xff0c…

【C语言】linux内核pci_iomap

一、pci_iomap /** pci_iomap 是一个用于映射 PCI 设备的 BAR&#xff08;Base Address Register&#xff0c;基地址寄存器&#xff09;的函数。* 此函数返回指向内存映射 IO 的指针&#xff0c;用于直接访问 PCI 设备的内存或 I/O 空间。* * 参数:* dev - 指向pci_dev结构的指…

IP如何异地共享文件?

【天联】 组网由于操作简单、跨平台应用、无网络要求、独创的安全加速方案等原因&#xff0c;被几十万用户广泛应用&#xff0c;解决了各行业客户的远程连接需求。采用穿透技术&#xff0c;简单易用&#xff0c;不需要在硬件设备中端口映射即可实现远程访问。 异地共享文件 在…

使用GO对PostgreSQL进行有意思的多线程压测

前言 针对PostgreSQL进行压缩&#xff0c;有很多相关的工具。有同学又要问了&#xff0c;为何还要再搞一个&#xff1f;比如&#xff0c;pgbench, sysbench之类的&#xff0c;已经很强大了。是的&#xff0c;它们都很强大。但有时候&#xff0c;在一些特殊的场景&#xff0c;可…

功能强大的国外商业PHP在线教育系统LMS源码/直播课程系统

功能强大的国外商业PHP在线教育系统LMS/在线教育市场源码/直播课程系统 Proacademy是在线教育一体化的解决方案&#xff0c;用于创建类似于Udemy、Skillshare、Coursera这种在线教育市场。 这个平台提供在线课程&#xff0c;现场课程&#xff0c;测验等等&#xff0c;并有一个…

单链表交叉分离,运用头插法,尾插法(算法库应用)

原文博客链接:单链表分离(头插法和尾插法的结合,理解指针变换)_3.对任务1或者2中创建的某一个单链表{a1,b1,a2,b2,...,an,bn},编写一个算法将-CSDN博客 函数实现: /************************************************** 函数名:separate_LinkList 功 能: 把一个链表,交叉新建…

如何在jupyter使用新建的虚拟环境以及改变jupyter启动文件路径。

对于刚刚使用jupyter的新手来说&#xff0c;经常不知道如何在其中使用新建的虚拟环境内核&#xff0c;同时&#xff0c;对于默认安装的jupyter&#xff0c;使用jupyter notebook命令启动 jupyter 以后往往默认是C盘的启动路径&#xff0c;如下图所示&#xff0c;这篇教程将告诉…

HBase的Python API操作(happybase)

一、Windows下安装Python库&#xff1a;happyhbase pip install happybase -i https://pypi.tuna.tsinghua.edu.cn/simple 二、 开启HBase的Thrift服务 想要使用Python API连接HBase&#xff0c;需要开启HBase的Thrift服务。所以&#xff0c;在Linux服务器上&#xff0c;执行…

软考数据库

目录 分值分布1. 事务管理1.1 事物的基本概念1.2 数据库的并发控制1.2.1 事务调度概念1.2.2 并发操作带来的问题1.2.3 并发控制技术1.2.4 隔离级别&#xff1a; 1.3 数据库的备份和恢复1.3.1 故障种类1.3.2 备份方法1.3.3 日志文件1.3.4 恢复 SQL语言 分值分布 1. 事务管理 1.…

读所罗门的密码笔记04_社会信用

1. 人工智能 1.1. 人工智能可以帮助人们处理复杂的大气问题&#xff0c;完善现有的气候变化模拟&#xff0c;帮助我们更好地了解人类活动对环境造成的危害&#xff0c;以及如何减少这种危害 1.2. 人工智能也有助于减少森林退化和非法砍伐 1.3. 人工智能甚至可以将我们从枯燥…

【数据结构】树、二叉树与堆(长期维护)

下面是关于树、二叉树、堆的一些知识分享&#xff0c;有需要借鉴即可。 一、初识树&#xff08;了解即可&#xff09; 1.树的概念 概念&#xff1a;一种非线性数据结构&#xff0c;逻辑形态上类似倒挂的树 树的构成&#xff1a;由一个根左子树右子树构成&#xff0c;其中子树…