Chronos: 将时间序列作为一种语言进行学习

这是一篇非常有意思的论文,它将时间序列分块并作为语言模型中的一个token来进行学习,并且得到了很好的效果。

Chronos是一个对时间序列数据的概率模型进行预训练的框架,它将这些值标记为与基于transformer的模型(如T5)一起使用。模型将序列的值缩放和量化到一个固定的词汇表,并在通过高斯过程创建的公共和合成数据集上进行训练。Chronos模型的参数范围从20M到710M不等,在已知数据集上优于传统和深度学习模型,在新数据集上表现出具有竞争力的零样本性能。

标记

为了使时间序列数据适应基于transformer的语言模型,使用了两个步骤:缩放和量化。缩放使用平均缩放将数据规范化到一个公共范围,其中每个点都通过历史上下文中绝对值的平均值进行调整。在缩放之后,量化通过将数据范围分成箱(每个箱由一个记号表示)将实值序列转换为离散标记。作者更喜欢统一的分位数分组,据说是要适应不同数据集的可变性,因为预测范围受到预定义的最小值和最大值的限制。另外就是还添加了用于填充和序列结束的特殊标记。

目标函数

Chronos是通过使用分类交叉熵损失函数将预测作为分类问题来训练时间序列数据。模型在表示量化时间序列数据的标记化词汇表上预测分布,并将该分布与真实分布之间的差异最小化。与距离感知度量不同,这种方法不直接考虑箱之间的接近程度,而是依赖于模型从数据中学习箱关系。这样就有两个优势:与现有语言模型体系结构和训练方法的无缝集成,可以学习任意的、潜在的多模态输出分布的能力,并且可以在不同领域之间通用,无需更改模型结构或训练目标。

Chronos模型通过对其预测的令牌分布进行自回归采样,对未来的时间步长进行概率预测。然后使用去量化函数和逆缩放将生成的令牌转换回实际值。

数据增广

TSMix通过组合两个以上的数据点,将Mixup数据增强概念(最初是为图像分类而开发的)扩展到时间序列数据。它从训练数据集中随机选择一些不同长度的时间序列,对它们进行缩放,并创建它们的凸组合。这种组合的权重是从对称狄利克雷分布中得出的。

KernelSynth则使用高斯过程合成数据生成。KernelSynth组装GP核来创建新的时间序列,利用一组基核来处理常见的时间序列模式,如趋势、平滑变化和季节性。通过随机选择这些核,并通过加法或乘法将其组合在一起,产生不同的时间序列数据。

实验结果

较大的Chronos-T5模型(基础和大型)超过基线模型,展示了优越的概率和点预测能力。这些模型不仅超越了AutoETS和AutoARIMA等传统统计模型,也超越了PatchTST和DeepAR等特定任务的深度学习模型。较小的Chronos变体和Chronos- gpt2也优于大多数基线,尽管PatchTST在某些情况下显示出更强的结果。季节性传统模型的竞争表现表明,这些数据集(主要来自能源和运输部门)具有很强的季节性趋势。

零样本预测概率预测方面,Chronos模型超过了局部统计模型和大多数特定任务模型,其中Chronos- t5 Large模型在点预测方面排名第三。它们的表现甚至超过了ForecastPFN和GPT4TS(微调GPT2),显示出作为通用时间序列预测器的显著前景。

微调小型模型也显示了显著的性能改进,使其在零样本设置和最佳任务特定模型中优于大型Chronos变体。

论文的一些研究

更大的型号更好;随机权重初始化比使用LLM权重更好,因为它们可能与时间预测无关;TSMix改善了零样本学习能力;使用大约10%的合成数据是最好的;

讨论

该研究证明了Chronos在各种数据集上的零样本能力,表明它有潜力通过微调技术(如LoRA或特定任务校准的保形方法)胜过特定任务模型。特定于任务的适配器或像LightGBM这样的模型的堆叠集成可以用来添加协变量并应用于多变量预测。

与特定任务的深度学习模型相比,大型Chronos模型的推理速度较慢。Chronos模型的优势在于其在不同数据集特征上的通用性,而不需要单独的特定任务训练,简化了预测流程。此外,通过优化的计算核、量化和更快的解码方法等技术也适用于Chronos,有可能提高推理速度和预测质量。处理长上下文数据的方法可以进一步提高Chronos在高频数据集上的性能,受nlp启发的方法,如温度调节和采样策略,可以提高预测的效率和准确性。

论文地址:

https://avoid.overfit.cn/post/3d2f93d490b5417d9e10ae3fad935c18

作者:Andrew Lukyanenko

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/494056.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

阿里云ubuntu服务器搭建可视化界面

连接终端 最好初始化服务器的时候 不要以root权限创建 否则会出错 1更新软件: sudo apt-get update2安装ubuntu desktop : sudo apt-get install ubuntu-desktop3 配置ubuntu desktop并重启: sudo apt-get -f install sudo dpkg-reconfigure ubuntu-desktop sudo reboot4 su…

【MySQL】13. 索引(重点)

1. 没有索引,可能会有什么问题 索引:提高数据库的性能,索引是物美价廉的东西了。 不用加内存,不用改程序,不用调sql,只要执行正确的 create index ,查询速度就可能提高成百上千倍。 但是天下没…

VMware ESXi部署macOS Monterey

正文共:1024 字 30 图,预估阅读时间:2 分钟 最早使用黑苹果是在2015年,装在了古老的Acer商务本上(老樹發新芽,acer tm 4750g裝黑蘋果);上次安装黑苹果是在两年前(VMware…

深入理解element-plus table二次封装:从理论到实践的全面指南

前言 在许多中后台管理系统中,表格占据着半壁江山,如果使用element plus组件库,那么少不了要用到table组件,可是table组件的功能过于基础,因此,我在table组件的实现基础之上进一步封装,从而实现…

Windows直接运行python程序

Windows直接运行python程序 一、新建bat脚本二、新建vbs脚本 一、新建bat脚本 新建bat批处理脚本,写入以下内容 echo off call conda activate pytorch python app.pyecho off:在此语句后所有运行的命令都不显示命令行本身,但是本身的指令是…

微信小程序的页面交互练习——实现比较两数大小功能

前提&#xff1a;配置好页面后 一、在wxml里面搭建好框架&#xff1a; <navigation-bar title"Weixin" back"{{false}}" color"black" background"#FFF"></navigation-bar> <scroll-view class"scrollarea"…

简单了解原型模式

什么是原型模式 区别于单例模式&#xff0c;原型模式的一个类可以有多个实例化的对象。 原型模式通过拷贝来产生新的对象&#xff0c;而不是new&#xff0c;并且可以根据自己的需求修改对象的属性。 实现Cloneable接口实现拷贝 而拷贝又分为浅拷贝和深拷贝&#xff0c;两者在…

大模型论文阅读:ADAPTIVE BUDGET ALLOCATION FOR PARAMETEREFFICIENT FINE-TUNING

大模型论文阅读:ADAPTIVE BUDGET ALLOCATION FOR PARAMETEREFFICIENT FINE-TUNING 论文链接:https://arxiv.org/pdf/2303.10512v1.pdf 当存在大量下游任务时,微调所有预训练模型的参数变得不可行。因此,为了以参数高效的方式学习预训练权重的增量更新,提出了许多微调方法,…

node.js项目初始化操作

项目环境Vscode 1.新建一个文件夹node.js(xx.js) 2.右键点击node.js&#xff0c;点击打开终端 我在VScode打开终端 输入npm init初始化项目没反应。 解决方法&#xff1a;进入文件夹node.js&#xff0c;出入cmd跳转到终端 重新输入npm init命令 正确结果如下图 后续命令按下…

酷开科技依托酷开系统用“平台+产品+场景”塑造全屋智能生活!

杰弗里摩尔的“鸿沟理论”中写道&#xff1a;高科技企业推进产品的早期市场和产品被广泛接受的主流市场之间&#xff0c;存在着一条巨大的“鸿沟”。“鸿沟”&#xff0c;指产品吸引早期接纳者后、赢得更多客户前的那段间歇&#xff0c;以及其中可预知和不可预知的阻碍。多数产…

SPRING-BOOT实现HTTP大文件断点续传分片下载

版本&#xff1a;6.5.40 代码&#xff1a;up6-jsp-springboot: Web大文件上传-jsp-springboot示例 - Gitee.com nosql示例 nosql示例不需要进行任何配置&#xff0c;可以直接访问测试。 SQL示例 1.创建数据库 2.配置数据库连接 3.自动下载maven依赖 4.启动项目 启动成功 6.访…

Oracle VM(虚拟机)性能监控工具

Oracle VM是一个独立的虚拟化环境&#xff0c;由 Oracle 提供支持和设计&#xff0c;旨在为运行虚拟机提供轻量级、安全的基于服务器的平台。Oracle VM 能够在受支持的虚拟化环境中部署操作系统和应用软件&#xff0c;Oracle VM 将用户和管理员与底层虚拟化技术隔离开来&#x…

队列+宽搜例题讲解!

429. N 叉树的层序遍历 题目解析&#xff1a; 根据题目分析&#xff0c;可以看出题目要我们求的是N叉数的层序遍历&#xff0c;就是把每层的放在一块&#xff0c;最后把每层都输出出来即可&#xff01; 算法分析&#xff1a; 我们可以利用队列先进先出的特性进行求解&#x…

56. 合并区间(力扣LeetCode)

文章目录 56. 合并区间题目描述思路贪心算法方法一&#xff1a;直接在res中修改代码逻辑梳理&#xff1a; 方法二&#xff1a;在原数组中插入一个超出题目范围的数组代码逻辑梳理&#xff1a; 56. 合并区间 题目描述 以数组 intervals 表示若干个区间的集合&#xff0c;其中单…

MyBatis-Plus分页接口实现教程:Spring Boot中如何编写分页查询

&#x1f31f; 前言 欢迎来到我的技术小宇宙&#xff01;&#x1f30c; 这里不仅是我记录技术点滴的后花园&#xff0c;也是我分享学习心得和项目经验的乐园。&#x1f4da; 无论你是技术小白还是资深大牛&#xff0c;这里总有一些内容能触动你的好奇心。&#x1f50d; &#x…

http响应练习—在服务器端渲染html(SSR)

一、什么是服务器端渲染&#xff08;SSR&#xff09; 简单说&#xff0c;就是在服务器上把网页生成好&#xff0c;整个的HTML页面生成出来&#xff0c;生成出的页面已经包含了所有必要的数据和结构信息&#xff0c;然后直接发给浏览器进行展现。 二、例题 要求搭建http服务&a…

白板手推公式性质 AR模型 时间序列分析

白板手推公式性质 AR模型 时间序列分析 视频讲解&#xff1a;https://www.bilibili.com/video/BV1D1421S76v/?spm_id_from.dynamic.content.click&vd_source6e452cd7908a2d9b382932f345476fd1 B站对应视频讲解(白板手推公式性质 AR模型 时间序列分析)

Java 学习和实践笔记(49):用javabean和一维数组的方式来存储表格数据

还是存储下面这个表格的数据&#xff0c;但使用另一种方法来做。 用javabean和一维数组的方法来做&#xff0c;示例代码如下&#xff1a; /*先创建一个类&#xff0c;其实就是创建好一个只有各属性列的空表格*/ class Employees {private int id;private String name;private …

【Linux进阶之路】理解UDP,成为TCP。

前言 学了TCP 和UDP之后&#xff0c;感觉UDP就像是初入职场的年轻人&#xff0c;两耳不闻 “窗外事”&#xff0c;只管尽力地把自己的事情做好&#xff0c;但收获的却是不可靠&#xff0c;而TCP更像是涉世极深的"职场老油条"&#xff0c;给人的感觉就是 “城府极深&a…

H12-831_338

多选题338、某园区部署OSPF实现网络互通&#xff0c;其中R2的LSDB如图所示。以下关于该LSDB信息的描述&#xff0c;错误的有哪些项? A.此时R4不能访间地址10.1.35.5/24&#xff0c;因为R4所在的Area l内没有泛洪R3-R5互联网段路由信息 B.Area l内无3类LSA&#xff0c;有7类1SA…