25.6 matlab里面的10中优化方法介绍——模拟退火算法(matlab程序)

1.简述

      

相信没有相关物理知识背景的小伙伴看到“退火”二字是一脸懵逼的...固体的退火过程指的是将固体加热至足够高的温度,再使其慢慢冷却的过程。在加热过程中,原本有序排列的内部粒子开始无序运动,此时固体的内能不断增大;而在降温过程中,粒子的排列又逐渐有序。

而物体系统总是趋向于保持能量最低的状态,理论上讲,在退火过程的降温过程中,如果降温过程足够的慢,可将每一时刻离散化,那么每一个温度下的固体都可能达到允许范围内的最小内能状态,而如何寻找该温度及状态即为模拟退火算法的核心问题。

模拟退火算法和遗传算法、粒子群算法等智能算法作为一种通用的概率算法,相关的知识可以去看看我之前的学习笔记:

Kezard:遗传算法1(GA)---基础概念及算法流程68 赞同 · 1 评论文章​编辑

Kezard:粒子群(PSO)算法概念及代码实现159 赞同 · 14 评论文章​编辑

该类智能算法都可用来寻找一个较大搜索空间之内的全局最优解。搜索空间之内的每一个元素都可能是问题的全局最优解,那么如何确立搜索方式、如何判断某一温度下的固体粒子内能状态便成为区分其他智能算法的核心工作。一般地,可以将温度T作为搜索空间;将实际情况中的目标函数值f看做内能E;而固体在某一温度下的状态看做问题的一个解x,即E=f(x);算法在一定的规则之下,控制温度T的降低,使固体的内能也随着最优值(内能最低)靠近,直至找到了全局最优解,就像固体退火过程一样。

如何判断内能减少?

Metropolis准则:从当前i状态发展到下一状态j,若新状态的内能小于状态i的内能,则接受j为新的状态,其对应的内能作为目前的最优解;否则,以概率] 接收该新解, 其中k为Boltzmann常数,T为目前的温度。在后续的判断过程中可加入计算机的蒙特卡罗实验模拟产生概率(随机数)。

算法设计为了寻找最小的内能,那可以对应到实际情况中的全局最小解,若要寻找全局最大值,在目标函数前添加“负号”即可。

算法基本步骤:

  1. 确定退火过程的温度初值 0 ,随机生成该温度下的粒子状态及一个解 0 ,计算目标函数值f即该状态下的内能 0 。
  2. 进入下一个冷却温度。
  3. 对当前的解 添加扰动,及产生个新的解  ,计算相应的内能 ,根据Metropolis准则判断是否接受新的解,更新局部最优解和全局最优解。
  4. 在不同的冷却温度 下,重复m次对x的扰动,即产生m个新的解,并执行2~3.
  5. 判断T是否已经到达了最低温度限制,一般设定为 0.01∼5 ,是则终止算法;否继续执行2~4.

算法实际上由两层循环所控制,外层循环控制降温过程的温度;内层循环控制对解x的扰动。算法的初始温度 0 较高,这样使得内能增大的初始解也可能被接受,因为能够跳出局部最小值的陷阱,然后通过慢慢的降低温度,对解不断地添加扰动,使得算法最终可能收敛到全局最优解。

前面的步骤5中谈到外层循环终止的条件为是否到达了最低温度限制,当然我们还可以引入一些提前终止降温过程的条件,比如最大寻找次数、满足最大精度设置等。

参数选择

一、控制参数T的初值 0

求解全局优化问题的随机搜索算法(例如遗传算法,粒子群算法)一般都采用全局粗略搜索与局部精细搜索相结合的策略。粗略搜索能够使得搜索过程跳出局部最优解的陷阱,而局部精细搜索便可以找到问题的全局最优解,一般而言,足够大的初值 0 才能遍历所有的可行解,过小的初值往往导致算法难以逾越局部最优解,从而不能找到全局最优解。所以在选取的时候应当适应的选取初值,并且与其他参数相协调。(我的程序中选择的初值为1000)

二、降温过程

降温参数,其取值为 0.5∼0.99 ,该参数决定了降温过程,其值选择的越大,则降温过程越慢,导致迭代次数的增加,当然更有可能寻找到全局最优解,若已经到达了热平衡,则仅需要少量的状态变换就可以达到准平衡,从而减少内层循环的长度(Markov链长度)

三、Markov链的长度(解的扰动变换次数)

选取原则是:在控制参数T的降温过程函数已选定的前提之下,从经验上来说,长度一般为 100� ,n为问题的规模。

模拟退火算法求解TSP问题的matlab求解

  1. TSP问题:TSP(Traveling salesman problem)即旅行商问题,旅行商希望在N个城市进行一次巡回旅行,可以恰好访问每一个城市一次,并且最终回到出发城市。并且要使得这次巡回旅行的总消耗最小(总距离或总花销等等),如何求这个路线?
  • TSP的解空间S是遍历每个城市恰好一次的所有回路(回到起点),那么一个可行解即为所有城市的一个排列,则解空间可以表示为:

即为每个城市的编号,其中的每一个排列即为一个离线,所以初始解就被表示成为了一个{1,2,...,N}的随机序列。

2. 目标函数

遍历所有城市的代价最小,此处我们将代价刻画为总路径最小 即为该最短路径(TSP问题的解即为城市标号的一个排列)

3. 新解的产生

  • 两点交换法:交换 ,的访问顺序
  • 三变换:任选序号 之间的路径插到 �之后访问。

4. Metropolis接收准则

以新解与当前解的目标函数差(内能之差)来定义接受概率:

2.代码

主程序:

%%   用模拟退火法计算函数的最小值
clear all
f = inline('5*sin(x(1)*x(2))+x(1)^2+x(2)^2','x');
l = [-5 -5]; %下限
u = [5 5]; %上限
x0 = [-4 0];
TolFun = 1e-9;
TolX=1e-5;
kmax = 800;
%%%%用Nelder-Meat法求
[xo_nd,fo] = Opt_Nelder(f,x0,TolX,TolFun,kmax) 
 %%%%用matlab内置函数验证
[xos,fos] = fminsearch(f,x0)
[xou,fou] = fminunc(f,x0)
%%%%用模拟退火法求
 q =0.8;
[xo_sa,fo_sa] =Opt_Simu(f,x0,l,u,kmax,q,TolFun)

子程序:

function [xo,fo] =Opt_Nelder(f,x0,TolX,TolFun,MaxIter)
%Nelder-Mead法用于多维变量的最优化问题,维数>=2.
N = length(x0);
if N == 1 %一维情况,用二次逼近计算
    [xo,fo] = Opt_Quadratic(f,x0,TolX,TolFun,MaxIter);
    return
end
S = eye(N);
for i = 1:N  %自变量维数大于2时,重复计算每个子平面的情况
    i1 = i + 1;
    if i1 > N
        i1 = 1;
    end
    abc = [x0; x0 + S(i,:); x0 + S(i1,:)]; %每一个定向子平面
    fabc = [feval(f,abc(1,:)); feval(f,abc(2,:)); feval(f,abc(3,:))];
    [x0,fo] = Nelder0(f,abc,fabc,TolX,TolFun,MaxIter);
    if N < 3  %二维情况不需重复
        break;
    end 
end
xo = x0;

3.运行结果

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/49292.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Nginx 高可用负载均衡(三种模式)

一、nginx普通集群负载均衡 1、安装keepalived (1)下载 https://www.keepalived.org/download.html(2)解压 tar -zxvf keepalived-2.0.18.tar.gz(3)使用configure命令配置安装目录与核心配置文件所在位置&#xff1a; ./configure --prefix/usr/local/keepalived --sysconf/e…

Vlan端口隔离(第二十四课)

一、端口隔离 1、端口隔离技术概述 1)端口隔离技术出现背景:为了实现报文之间的二层隔离,可以将不同的端口加入不同的VLAN,但这样会浪费有限的VLAN ID资源。 2)端口隔离的作用:采用端口隔离功能,可以实现同一VLAN内端口之间的隔离。 3)如何实现端口隔离功能:只需要…

十五章:使用类别峰值响应的弱监督实例分割

0.摘要 目前&#xff0c;使用图像级别标签而不是昂贵的像素级掩码进行弱监督实例分割的研究还未得到充分探索。本文通过利用类别峰值响应来实现一个分类网络&#xff0c;用于提取实例掩码&#xff0c;来解决这个具有挑战性的问题。只通过图像标签的监督下&#xff0c;完全卷积的…

HBuilder 编辑器终端窗口无法输入,未响应的解决方案

HBuilder 编辑器终端窗口无法输入&#xff0c;未响应的解决方案 一、找到 HBuilder 安装目录 找到 main.js HBuilderX - plugins - builtincef3terminal - script - main.js 二、编辑 main.js 将 main.js 文件中的 powershell.exe 和 cmd.exe 路径都改为绝对路径 C:/Windows…

【深度学习】WaveMix: A Resource-efficient Neural Network for Image Analysis 论文

论文&#xff1a;https://arxiv.org/abs/2205.14375 代码&#xff1a;https://github.com/pranavphoenix/WaveMix 文章目录 ABSTRACTIntroductionBackground and Related WorksWaveMix Architectural FrameworkOverall architectureWaveMix block Experiments and ResultsTasks…

activemq消息中间件

ActiveMQ消息中间件详解 下载地址&#xff1a;https://activemq.apache.org/activemq-5015009-release 1、MQ的产品种类 1.1、消息中间件的特性/共同特性/共同维度 Kafka&#xff08;大数据专用、由java/scala编写&#xff09; API发送和接收MQ的高可用性MQ的集群和容错配置…

Docker 之 Consul容器服务更新与发现

一、Consul介绍 1、什么是服务注册与发现 服务注册与发现是微服务架构中不可或缺的重要组件。起初服务都是单节点的&#xff0c;不保障高可用性&#xff0c;也不考虑服务的压力承载&#xff0c;服务之间调用单纯的通过接口访问。直到后来出现了多个节点的分布式架构&#xff…

Android平台GB28181设备接入侧如何同时对外输出RTSP流?

技术背景 GB28181的应用场景非常广泛&#xff0c;如公共安全、交通管理、企业安全、教育、医疗等众多领域&#xff0c;细分场景可用于如执法记录仪、智能安全帽、智能监控、智慧零售、智慧教育、远程办公、明厨亮灶、智慧交通、智慧工地、雪亮工程、平安乡村、生产运输、车载终…

Flutter的开发环境搭建-图解

前言&#xff1a;Flutter作为一个移动应用开发框架&#xff0c;具有许多优点和一些局限性。最大的优点就是-跨平台开发&#xff1a;Flutter可以在iOS和Android等多个平台上进行跨平台开发&#xff0c;使用一套代码编写应用程序&#xff0c;节省开发时间和成本。 Flutter可以编…

了解Unity编辑器之组件篇Mesh(三)

Mesh&#xff1a;是一种三维模型的表示形式&#xff0c;它由一系列顶点、三角形&#xff08;或其他多边形&#xff09;和相关属性组成。Mesh用于表示物体的外观和形状&#xff0c;它是可见物体的基本组成部分。通过操作Mesh&#xff0c;开发者可以实现各种视觉效果、物理模拟和…

基于PCA和小波算法联合实现红外与可见光图像融合的Matlab仿真(完整源码+35组数据集)

以下是一个使用PCA和小波实现红外与可见光图像融合的Matlab仿真完整源码。源码中只需修改红外图像&#xff08;IR.bmp&#xff09;和可见光图像&#xff08;VI.bmp&#xff09;名字即可 文章目录 效果展示数据集展示步骤说明完整源码下载地址 效果展示 最终融合效果展示&#x…

java执行ffmpeg命名的Docker镜像制作

今天来记录一下通过Dockerfile制作docker镜像的过程 背景 我需要通过java服务调用ffmpeg去执行视频合并的功能&#xff0c;想把这个环境封装到docker镜像当中&#xff0c;方便以后迁移部署。 实现方法 随便找一个路径创建一个Dockerfile文件 touch Dockerfilevim Dockerfi…

如何使用vscode连接远程服务器

1、安装remote-ssh 在应用商店搜索remote-ssh&#xff0c;安装remote-ssh 2、安装完成后会出现远程资源管理器 3、点击远程资源管理器 --ssh的➕号&#xff0c;在输出框内输入要连接的服务器ip及账户名 如&#xff1a;ssh 账户名ip地址 4、输入后回车保存 5、保存后刷新一下 6…

Redis学习路线(1)—— Redis的安装

一、NoSQL SQL VS NoSQL 1、名称 SQL 主要是指关系数据库。NoSQL 主要是指非关系数据库。 2、存储结构 SQL 是结构化的数据库&#xff0c;以表格的形式存储数据。NoSQL 是非结构化的数据库&#xff0c;以Key-Value&#xff08;Redis&#xff09;&#xff0c;JSON格式文档&…

【React】版本正确安装echarts-liquidfill(水球图表)包引入不成功问题

目标效果图&#xff1a; 安装&#xff1a; npm install echarts npm install echarts-liquidfill 引入&#xff1a; Import:import * as echarts from echarts; import echarts-liquidfill 或 import echarts-liquidfill/src/liquidFill.jsOr:import * as echarts from…

TreeMap的底层实现

0. 你需要知道的TreeMap的内置属性 0.1 节点属性 K key; // 键 V value; // 值 Entry<K,V> left; // 左子节点 Entry<K,V> right; // 右子节点 Entry<K,V> parent; // 父节点 boolean color; // 节点的颜色0.2 成员变量 //比较器对象private f…

Android性能优化之游戏引擎初始化ANR

近期&#xff0c;着手对bugly上的anr 处理&#xff0c;记录下优化的方向。 借用网上的一张图&#xff1a; 这里的anr 问题是属于主线程的call 耗时操作。需要使用trace 来获取发生anr前一些列的耗时方法调用时间&#xff0c;再次梳理业务&#xff0c;才可能解决。 问题1 ja…

14 Linux实操篇-进程管理(重点)

14 Linux实操篇-进程管理&#xff08;重点&#xff09; 文章目录 14 Linux实操篇-进程管理&#xff08;重点&#xff09;14.1 进程的基本操作14.1.1 进程和程序14.1.2 父进程和子进程14.1.3 常见的Linux进程14.1.4 显示系统执行的进程-ps14.1.5 终止进程-kill/killall14.1.6 查…

LeetCode 75 第十二题(11)盛最多水的容器

目录 题目: 示例: 分析: 代码: 题目: 示例: 分析: 配合着示例给出的图片我们可以得知找出盛水最多的容器是什么意思,给一个数组,找出数组中两个元素能围成的最大的矩阵面积是多少. 比较直观的想法是套两层for循环暴力解出来,但是这题是中等难度题,一般中等题是没法用暴力得…

【动态规划刷题 2】使⽤最⼩花费爬楼梯 解码⽅法

使⽤最⼩花费爬楼梯 746 . 使用最小花费爬楼梯 链接: 746 . 使用最小花费爬楼梯 给你一个整数数组 cost &#xff0c;其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用&#xff0c;即可选择向上爬一个或者两个台阶。 你可以选择从下标为 0 或下标为 …