【C++】模板与泛型编程

文章目录

  • 1. 泛型编程
  • 2. 函数模板
    • 2.1 函数模板概念
    • 2.2 函数模板格式
    • 2.3 函数模板的原理
    • 2.4 函数模板的实例化
    • 2.5 模板参数的匹配原则
  • 3. 类模板
    • 3.1 类模板的定义格式
    • 3.2 类模板的实例化
  • 4. 非类型模板参数
  • 5. 模板的特化
    • 5.1 概念
    • 5.2 函数模板特化
    • 5.3 全特化
    • 5.4 偏特化
    • 5.5 类模板特化应用示例
  • 6. 模板分离编译
    • 6.1 什么是分离编译
    • 6.2 模板的分离编译
    • 6.3 解决方法
  • 7. class和typename的区别




1. 泛型编程


如何实现一个通用的交换函数呢?

void Swap(int& left, int& right)
{
	int temp = left;
	left = right;
	right = temp;
}
void Swap(double& left, double& right)
{
	double temp = left;
	left = right;
	right = temp;
}
void Swap(char& left, char& right)
{
	char temp = left;
	left = right;
	right = temp;
}
......

使用函数重载虽然可以实现,但是有一下几个不好的地方:

  1. 重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增加对应的函数
  2. 代码的可维护性比较低,一个出错可能所有的重载均出错

那能否告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成代码呢?
)
如果在C++中,也能够存在这样一个模具,通过给这个模具中填充不同材料(类型),来获得不同材料的铸件(即生成具体类型的代码),那将会节省许多头发。巧的是前人早已将树栽好,我们只需在此乘凉。

泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。

在这里插入图片描述

2. 函数模板


2.1 函数模板概念

函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本

2.2 函数模板格式

template<typename T1, typename T2, ......, typename Tn>
返回值类型 函数名(参数列表) {}

比如:

template<typename T>
void Swap(T& left, T& right)
{
	T temp = left;
	left = right;
	right = temp;
}

注意:typename是用来定义模板参数关键字也可以使用class(切记:不能使用struct代替class)

2.3 函数模板的原理

那么如何解决上面的问题呢?大家都知道,瓦特改良蒸汽机,人类开始了工业革命,解放了生产力。机器生产淘汰掉了很多手工产品。本质是什么,重复的工作交给了机器去完成。有人给出了论调:懒人创造世界。
在这里插入图片描述

⭐️:函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。所以其实模板就是将本来应该我们做的重复的事情交给了编译器

在这里插入图片描述
在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用。比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然后产生一份专门处理double类型的代码,对于字符类型也是如此。

2.4 函数模板的实例化

用不同类型的参数使用函数模板时,称为函数模板的实例化。模板参数实例化分为:隐式实例化和显式实例化

  1. 隐式实例化:让编译器根据实参推演模板参数的实际类型
template<class T>
T Add(const T& left, const T& right)
{
	return left + right;
}
int main()
{
	int a1 = 10, a2 = 20;
	double d1 = 10.0, d2 = 20.0;
	Add(a1, a2);
	Add(d1, d2);

	/*
	该语句不能通过编译,因为在编译期间,当编译器看到该实例化时,需要推演其实参类型
	通过实参a1将T推演为int,通过实参d1将T推演为double类型,但模板参数列表中只有一个T,
	编译器无法确定此处到底该将T确定为int 或者 double类型而报错
	注意:在模板中,编译器一般不会进行类型转换操作,因为一旦转化出问题,编译器就需要背黑锅
	Add(a1, d1);
	*/

	// 此时有两种处理方式:1. 用户自己来强制转化 2. 使用显式实例化
	Add(a1, (int)d1);
	return 0;
}
  1. 显式实例化:在函数名后的<>中指定模板参数的实际类型
template<class T>
T Add(const T& left, const T& right)
{
	return left + right;
}

int main(void)
{
	int a = 10;
	double b = 20.0;

	// 显式实例化
	Add<int>(a, b);
	return 0;
}

⚠️:如果类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功编译器将会报错。

2.5 模板参数的匹配原则

  1. 一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数
// 专门处理int的加法函数
int Add(int left, int right)
{
	return left + right;
}
// 通用加法函数
template<class T>
T Add(T left, T right)
{
	return left + right;
}
void Test()
{
	Add(1, 2); // 与非模板函数匹配,编译器不需要特化
	Add<int>(1, 2); // 调用编译器特化的Add版本
}
  1. 对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而不会从该模板产生出一个实例。如果模板可以产生一个具有更好匹配的函数, 那么将选择模板
// 专门处理int的加法函数
int Add(int left, int right)
{
	return left + right;
}
// 通用加法函数
template<class T1, class T2>
T1 Add(T1 left, T2 right)
{
	return left + right;
}
void Test()
{
	Add(1, 2); // 与非函数模板类型完全匹配,不需要函数模板实例化
	Add(1, 2.0); // 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函数
}
  1. 模板函数不允许自动类型转换,但普通函数可以进行自动类型转换


3. 类模板


3.1 类模板的定义格式

template<class T1, class T2, ..., class Tn>
class 类模板名
{
	// 类内成员定义
};
// 动态顺序表
// 注意:Vector不是具体的类,是编译器根据被实例化的类型生成具体类的模具
template<class T>
class Vector
{
public:
	Vector(size_t capacity = 10)
		: _pData(new T[capacity])
		, _size(0)
		, _capacity(capacity)
	{}

	// 使用析构函数演示:在类中声明,在类外定义。
	~Vector();

	void PushBack(const T& data)void PopBack();
		// ...

		size_t Size() { return _size; }

	T& operator[](size_t pos)
	{
		assert(pos < _size);
		return _pData[pos];
	}

private:
	T* _pData;
	size_t _size;
	size_t _capacity;
};
// 注意:类模板中函数放在类外进行定义时,需要加模板参数列表
template <class T>
Vector<T>::~Vector()
{
	if (_pData)
		delete[] _pData;
	_size = _capacity = 0;
}

3.2 类模板的实例化

类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后跟<>,然后将实例化的类型放在<>中即可,类模板名字不是真正的类,而实例化的结果才是真正的类

// Vector类名,Vector<int>才是类型
Vector<int> s1;
Vector<double> s2;


4. 非类型模板参数


模板参数分类类型形参与非类型形参。

类型形参即:出现在模板参数列表中,跟在class或者typename之类的参数类型名称。

非类型形参,就是用一个常量作为类(函数)模板的一个参数,在类(函数)模板中可将该参数当成常量来使用。

namespace hyt
{
	// 定义一个模板类型的静态数组
	template<class T, size_t N = 10>
	class array
	{
	public:
		T& operator[](size_t index) { return _array[index]; }
		const T& operator[](size_t index)const { return _array[index]; }

		size_t size()const { return _size; }
		bool empty()const { return 0 == _size; }

	private:
		T _array[N];
		size_t _size;
	};
}

注意:

  1. 浮点数、类对象以及字符串是不允许作为非类型模板参数的
  2. 非类型的模板参数必须在编译期间就能确认结果


5. 模板的特化


5.1 概念

通常情况下,使用模板可以实现一些与类型无关的代码,但对于一些特殊类型的可能会得到一些错误的结果,需要特殊处理,比如:实现了一个专门用来进行小于比较的函数模板

// 函数模板 -- 参数匹配
template<class T>
bool Less(T left, T right)
{
	return left < right;
}
int main()
{
	cout << Less(1, 2) << endl; // 可以比较,结果正确
	Date d1(2022, 7, 7);
	Date d2(2022, 7, 8);
	cout << Less(d1, d2) << endl; // 可以比较,结果正确
	Date* p1 = &d1;
	Date* p2 = &d2;
	cout << Less(p1, p2) << endl; // 可以比较,结果错误
	return 0;
}

可以看到,Less绝对多数情况下都可以正常比较,但是在特殊场景下就得到错误的结果。上述示例中,p1指向的d1显然小于p2指向的d2对象,但是Less内部并没有比较p1和p2指向的对象内容,而比较的是p1和p2指针的地址,这就无法达到预期而错误

此时,就需要对模板进行特化。即:在原模板类的基础上,针对特殊类型所进行特殊化的实现方式。 模板特化中分为函数模板特化和类模板特化

5.2 函数模板特化

函数模板的特化步骤:

  1. 必须要先有一个基础的函数模板
  2. 关键字template后面接一对空的尖括号<>
  3. 函数名后跟一对尖括号,尖括号中指定需要特化的类型
  4. 函数形参表:必须要和模板函数的基础参数类型完全相同,如果不同编译器可能会报一些奇怪的错误。
// 函数模板 -- 参数匹配
template<class T>
bool Less(T left, T right)
{
	return left < right;
}
// 对Less函数模板进行特化
template<>
bool Less<Date*>(Date* left, Date* right)
{
	return *left < *right;
}
int main()
{
	cout << Less(1, 2) << endl;
	Date d1(2022, 7, 7);
	Date d2(2022, 7, 8);
	cout << Less(d1, d2) << endl;
	Date* p1 = &d1;
	Date* p2 = &d2;
	cout << Less(p1, p2) << endl; // 调用特化之后的版本,而不走模板生成了
	return 0;
}

注意:一般情况下如果函数模板遇到不能处理或者处理有误的类型,为了实现简单通常都是将该函数直接给出。

bool Less(Date* left, Date* right)
{
	return *left < *right;
}

该种实现简单明了,代码的可读性高,容易书写,因为对于一些参数类型复杂的函数模板,特化时特别给出,因此函数模板不建议特化。

5.3 全特化

全特化即是将模板参数列表中所有的参数都确定化。

template<class T1, class T2>
class Data
{
public:
	Data() { cout << "Data<T1, T2>" << endl; }
private:
	T1 _d1;
	T2 _d2;
};
template<>
class Data<int, char>
{
public:
	Data() { cout << "Data<int, char>" << endl; }
private:
	int _d1;
	char _d2;
};
void TestVector()
{
	Data<int, int> d1;
	Data<int, char> d2;
}

在这里插入图片描述

5.4 偏特化

偏特化:任何针对模板参数进一步进行条件限制设计的特化版本。比如对于以下模板类:

// 将第二个参数特化为int
template <class T1>
class Data<T1, int>
{
public:
	Data() { cout << "Data<T1, int>" << endl; }
private:
	T1 _d1;
	int _d2;
};

偏特化有以下两种表现方式:

  • 部分特化
    将模板参数类表中的一部分参数特化
// 将第二个参数特化为int
template <class T1>
class Data<T1, int>
{
public:
	Data() { cout << "Data<T1, int>" << endl; }
private:
	T1 _d1;
	int _d2;
};
  • 参数更进一步的限制
    偏特化并不仅仅是指特化部分参数,而是针对模板参数更进一步的条件限制所设计出来的一个特化版本。
//两个参数偏特化为指针类型
template <typename T1, typename T2>
class Data <T1*, T2*>
{
public:
	Data() { cout << "Data<T1*, T2*>" << endl; }

private:
	T1 _d1;
	T2 _d2;
};
//两个参数偏特化为引用类型
template <typename T1, typename T2>
class Data <T1&, T2&>
{
public:
	Data(const T1& d1, const T2& d2)
		: _d1(d1)
		, _d2(d2)
	{
		cout << "Data<T1&, T2&>" << endl;
	}

private:
	const T1& _d1;
	const T2& _d2;
};
void test2()
{
	Data<double, int> d1; // 调用特化的int版本
	Data<int, double> d2; // 调用基础的模板 
	Data<int*, int*> d3; // 调用特化的指针版本
	Data<int&, int&> d4(1, 2); // 调用特化的指针版本
}

5.5 类模板特化应用示例

有如下专门用来按照小于比较的类模板Less:

#include<vector>
#include <algorithm>
template<class T>
struct Less
{
	bool operator()(const T& x, const T& y) const
	{
		return x < y;
	}
};
int main()
{
	Date d1(2022, 7, 7);
	Date d2(2022, 7, 6);
	Date d3(2022, 7, 8);
	vector<Date> v1;
	v1.push_back(d1);
	v1.push_back(d2);
	v1.push_back(d3);
	// 可以直接排序,结果是日期升序
	sort(v1.begin(), v1.end(), Less<Date>());
	vector<Date*> v2;
	v2.push_back(&d1);
	v2.push_back(&d2);
	v2.push_back(&d3);

	// 可以直接排序,结果错误日期还不是升序,而v2中放的地址是升序
	// 此处需要在排序过程中,让sort比较v2中存放地址指向的日期对象
	// 但是走Less模板,sort在排序时实际比较的是v2中指针的地址,因此无法达到预期
	sort(v2.begin(), v2.end(), Less<Date*>());
	return 0;
}

通过观察上述程序的结果发现,对于日期对象可以直接排序,并且结果是正确的。但是如果待排序元素是指针,结果就不一定正确。因为:sort最终按照Less模板中方式比较,所以只会比较指针,而不是比较指针指向空间中内容,此时可以使用类版本特化来处理上述问题:

// 对Less类模板按照指针方式特化
template<class T>
struct Less
{
	bool operator()(T x, T y) const
	{
		return x < y;
	}
};

// 偏特化
template<class T>
struct Less<T*>
{
	bool operator()(T* x, T* y) const
	{
		return *x < *y;
	}
};

// 全特化
template<>
struct Less<Date*>
{
	bool operator()(Date* x, Date* y) const
	{
		return *x < *y;
	}
};

特化之后,在运行上述代码,就能得到正确的结果


6. 模板分离编译


6.1 什么是分离编译

一个程序(项目)由若干个源文件共同实现,而每个源文件单独编译生成目标文件,最后将所有目标文件链接起来形成单一的可执行文件的过程称为分离编译模式。

6.2 模板的分离编译

假如有以下场景,模板的声明与定义分离开,在头文件中进行声明,源文件中完成定义:

// a.h
template<class T>
T Add(const T& left, const T& right);

// a.cpp
template<class T>
T Add(const T& left, const T& right)
{
	return left + right;
}

// main.cpp
#include"a.h"
int main()
{
	Add(1, 2);
	Add(1.0, 2.0);
	return 0;
}

我们这样写是不能完成编译的,分析如下:
在这里插入图片描述

6.3 解决方法

  1. 将声明和定义放到一个文件"xxx.hpp"里面或者"xxx.h"其实也是可以的。 推荐使用这种
  2. 模板定义的位置显示实例化。这种方法因为要先将会用到的类型显示实例化出来,比较繁琐,所以不推荐使用
// a.h
#include <iostream>
using namespace std;
template<class T>
T Add(const T& left, const T& right);

// a.cpp
#include "a.hpp"
// 显示实例化int类型
template    // 注:这里没有<>
int Add<int>(const int&, const int&);

// 显示实例化double类型
template double Add<double>(const double&, const double&);

template<class T>
T Add(const T& left, const T& right)
{
	cout << "T Add(const T& left, const T& right)" << endl;
	return left + right;
}

// main.cpp
#include"a.hpp"
int main()
{
	Add(1, 2);
	Add(1.0, 2.0);
	return 0;
}


7. class和typename的区别


在C++模板中,classtypename是用于声明模板参数类型的关键字,它们在大多数情况下是没有什么区别的,但在一下情况下,还是有些区别:

  • 当模板参数可能是类型别名或模板类型时,使用 typename 可以更明确地表示这是一个类型。
  • 在某些情况下,如在模板成员函数中引用类的成员类型或在模板类内部定义类型别名时,使用 typename 是必需的,而使用 class 可能会导致编译错误。

下面我展示一下模板成员函数中引用类的成员类型时使用typename的必要性:

template <typename T>
class MyClass {
public:
    void myMethod() {
        // 错误:使用 class 无法正确识别成员类型
        T::Type memberType;

        // 正确:使用 typename 可以正确识别成员类型
        typename T::Type memberType;
    }
};

// 假设有一个类派生自 MyClass
class DerivedClass : public MyClass<DerivedClass> {
public:
    using Type = int;
};

int main() {
    DerivedClass obj;
    obj.myMethod();
    return 0;
}

在上述示例中, MyClass 是一个模板类, myMethod 是其中的一个成员函数。在 myMethod 中,尝试使用 T::Type 来引用类的成员类型。如果使用 class 关键字,如 T::Type memberType; ,可能会导致编译错误,因为编译器无法正确识别 Type 是类的成员类型。

然而,使用 typename 关键字,如 typename T::Type memberType; ,可以明确地告诉编译器 Type 是类的成员类型,从而避免编译错误。

这种情况在模板类内部定义类型别名时也类似。如果在模板类内部使用 class 来定义类型别名,可能会导致错误。而使用 typename 可以正确地定义类型别名。

通过使用 typename ,可以确保在模板代码中正确地识别和使用类的成员类型和类型别名,避免潜在的编译错误。这样的例子在实际编程中可能会更复杂,但原理是相同的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/488521.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Android 系统应用 pk8签名文件转jks或keystore教程

一、介绍 签名文件对于我们在做应用开发中&#xff0c;经常遇到&#xff0c;且签名文件不仅仅是保护应用安全&#xff0c;还会涉及到应用与底层之间的数据共享和API文件等问题。 在Android中&#xff0c;签名文件同样也存在这个问题。但是android中又区分系统应用和普通应用。系…

汉明校验·简明教程

汉明校验 一、简介 汉明码是由 Richard Hanming 于 1950 年提出的&#xff0c;它具有一位纠错能力。 新增的汉明码校验位数应满足如下关系&#xff1a; 2 k ⩾ n k 1 2^{k}\geqslant nk1 2k⩾nk1&#xff0c;其中k为校验位位数&#xff0c;n位数据位数。 二、汉明码生成 确…

centos7 的redis的安装

文章目录 查看本机redis⾸先安装 scl 源, 再安装 redis 基本配置启动redis停止redis 查看本机redis ⾸先安装 scl 源, 再安装 redis 安装scl源 yum install centos-release-scl-rh安装redis5 yum install rh-redis5-redis安装成功 基本配置 修改etc/redis/redis.conf 文件…

代码随想录算法训练营第二十一天(二叉树VII)| 530. 二叉搜索树的最小绝对差、501. 二叉搜索树中的众数、236. 二叉树的最近公共祖先(JAVA)

文章目录 530. 二叉搜索树的最小绝对差解题思路源码 501. 二叉搜索树中的众数解题思路源码 236. 二叉树的最近公共祖先解题思路源码 530. 二叉搜索树的最小绝对差 给你一个二叉搜索树的根节点 root &#xff0c;返回 树中任意两不同节点值之间的最小差值 。 差值是一个正数&a…

如何在 Ubuntu 安装桌面环境

在 Ubuntu 上安装不同的桌面环境 如果你正在使用官方的 Ubuntu 发行版&#xff0c;它运行在 GNOME 上&#xff0c;那么你可以很容易地从默认的包管理器安装其他流行的桌面环境&#xff08;DE&#xff09;。让我们开始吧… 在 Ubuntu 上安装 KDE Plasma 如果你正在使用 GNOME…

JAVA使用POI实现Excel单元格合并-02

JAVA使用POI实现Excel单元格合并 实现效果 解释&#xff1a;只要是遇见与前一行相同的数据就合并 引入jar <dependency><groupId>org.apache.poi</groupId><artifactId>poi-ooxml</artifactId><version>5.2.2</version></depe…

第114讲:Mycat实践指南:按照单位为月的日期实现水平分表

文章目录 1.按月分片的概念1.按月分片的概念 2.按照天数对某张表进行水平拆分2.1.在所有的分片节点中创建表结构2.2.配置Mycat实现字符串按月分片的水平分表2.2.1.配置Schema配置文件2.2.2.配置Rule分片规则配置文件2.2.3.配置Server配置文件2.2.4.重启Mycat 2.3.写入数据观察分…

ora-00314 00312

背景&#xff1a;某医院数据库打不开&#xff0c;alter database open报错&#xff08;跟我说是被勒索了。。&#xff09; 查看日志组信息&#xff1a; select group#,sequence#,archived,status from v$log;处理方法&#xff1a; 若该组是非当前状态&#xff0c;而且未归档&…

Kubernetes Pod深度解析:构建可靠微服务的秘密武器(上)

&#x1f407;明明跟你说过&#xff1a;个人主页 &#x1f3c5;个人专栏&#xff1a;《Kubernetes航线图&#xff1a;从船长到K8s掌舵者》 &#x1f3c5; &#x1f516;行路有良友&#xff0c;便是天堂&#x1f516; 目录 一、引言 1、Kubernetes概述 2、Pod概述 二、Po…

FastAPI+React全栈开发02 什么是FARM技术栈

Chapter01 Web Development and the FARM Stack 02 What is the FARM stack and how does it fit together? FastAPIReact全栈开发02 什么是FARM技术栈 It is important to understand that stacks aren’t really special, they are just sets of technologies that cover…

Python学习:条件控制

Python条件控制概念 条件控制是编程中的一个重要概念&#xff0c;用于根据不同情况执行不同的代码逻辑。在Python中&#xff0c;条件控制通常使用if语句来实现。if语句的基本语法如下&#xff1a; if 条件:执行语句 elif 其他条件:执行语句 else:执行语句其中&#xff0c;if…

2016年认证杯SPSSPRO杯数学建模C题(第二阶段)如何有效的抑制校园霸凌事件的发生全过程文档及程序

2016年认证杯SPSSPRO杯数学建模 C题 如何有效的抑制校园霸凌事件的发生 原题再现&#xff1a; 近年来&#xff0c;我国发生的多起校园霸凌事件在媒体的报道下引发了许多国人的关注。霸凌事件对学生身体和精神上的影响是极为严重而长远的&#xff0c;因此对于这些情况我们应该…

网络七层模型之网络层:理解网络通信的架构(三)

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

基于傅里叶描述子和HSV颜色特征的KNN水果类型识别,Matlab实现

博主简介&#xff1a; 专注、专一于Matlab图像处理学习、交流&#xff0c;matlab图像代码代做/项目合作可以联系&#xff08;QQ:3249726188&#xff09; 个人主页&#xff1a;Matlab_ImagePro-CSDN博客 原则&#xff1a;代码均由本人编写完成&#xff0c;非中介&#xff0c;提供…

【物联网】Qinghub Kafka 数据采集

基础信息 组件名称 &#xff1a; kafka-connector 组件版本&#xff1a; 1.0.0 组件类型&#xff1a; 系统默认 状 态&#xff1a; 正式发布 组件描述&#xff1a;通用kafka连接网关&#xff0c;消费来自kafka的数据&#xff0c;并转发给下一个节点做相关的数据解析。 配置文…

【智能算法】乌鸦搜索算法(CSA)原理及实现

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献 1.背景 2016年&#xff0c;Askarzadeh等人受到乌鸦觅食自然行为启发&#xff0c;提出了乌鸦搜索算法&#xff08;Crow Search Algorithm, CSA&#xff09;。 2.算法原理 2.1算法思想 CSA模拟了乌鸦进行觅…

CUDA从入门到放弃(四):CUDA 编程模式 CUDA Programming Model

CUDA从入门到放弃&#xff08;四&#xff09;&#xff1a;CUDA 编程模式 CUDA Programming Model 1 Kernels CUDA C 扩展了 C&#xff0c;允许定义名为内核的函数&#xff0c;这些函数可以被不同的 CUDA 线程并行执行多次&#xff0c;而不是像普通 C 函数那样只执行一次。内核…

Python数据结构实验 递归算法设计

一、实验目的 1&#xff0e;掌握递归程序设计的基本原理和方法&#xff1b; 2&#xff0e;熟悉数据结构中顺序表和单链表下的递归算法设计思想&#xff1b; 3&#xff0e;掌握并灵活运用递归算法解决一些较复杂的应用问题。 二、实验环境 1&#xff0e;Windows操作系统的计…

使用JMeter进行梯度压测

使用JMeter进行梯度压测 梯度压测配置如下&#xff1a; 使用线程:5&#xff0c;然后循环5000次&#xff0c;共2.5万个样本使用线程:10&#xff0c;然后循环5000次&#xff0c;共5万个样本使用线程:15&#xff0c;然后循环5000次&#xff0c;共7.5万个样本使用线程:20&#xff…

投资现货黄金有持仓时间限制吗?

投资现货黄金是否有持仓时间限制&#xff1f;这是许多投资者在进入黄金市场前都想要了解的一个问题。实际上&#xff0c;现货黄金交易并没有严格的持仓时间限制。换句话说&#xff0c;投资者可以按照个人的投资策略和市场情况自由决定持有黄金的时间长度。 以下是影响现货黄金持…