Matlab|【免费】智能配电网的双时间尺度随机优化调度

目录

1 主要内容

基础模型

2 部分代码

3 部分程序结果

4 下载链接


主要内容

该程序为文章《Two-Timescale Stochastic Dispatch of Smart Distribution Grids》的源代码,主要做的是主动配电网的双时间尺度随机优化调度,该模型考虑配电网的高效和安全运行涉及到在不同的时间尺度上的决策,如电压控制器可以在慢时间尺度进行调度,而光伏需要在快时间尺度调度和调节,以最佳地跟踪可再生能源发电和需求的变化,两种时间尺度通过耦合方式形成统一的优化调度模型。文中对于随机优化模型建立了两种方式,分别是平均调度算法和概率调度算法,这两种方法均基于辐射网络线性分布潮流(LDF)模型,模型涉及拉格朗日、非凸转换等深度内容,非常适合用来学习。程序采用matlab+cvx进行求解,程序采用模块化方式、采用英文注释,适合有编程经验的同学深度学习!

  • 基础模型

该模型通过引入A建立配网潮流模型,通过电流流向(始端和终端)建立线路和节点关联关系。

以此为基础通过进一步推导和变量集合,形成优化调度模型。

将上述模型中的(9l)替换为下述概率模型即可形成概率调度算法。

模型中目标函数涉及到在慢时间尺度上的能量调度成本加上快速时间尺度上的平均能源管理成本,(9b)-(9c)确保节点(无功)有功功率平衡,(9e)考虑有功功率损失,(9f)是线性潮流容量约束,(9i)-(9l)是电压约束,其中(9l)为平均电压约束,替换成(10)即形成概率电压约束。

部分代码

clear; close all
%%
preprocess;
​
%buses_pm = [3 5 14 25 32 51];
buses_pm = [];
b_pm = false(1, Nb);
b_pm(buses_pm) = 1;
buses_pd = [10, 18, 21, 30, 36, 43, 51, 55];
b_pd = false(1, Nb);
b_pd(buses_pd) = 1;
​
params = struct();
params.pm_lower = zeros(Nb, 1);
params.pm_upper = zeros(Nb, 1);
params.pm_upper(b_pm) = 0.25;
%http://www.powermag.com/microturbine-technology-matures/
microturbine_pf = 0.8;
params.pm_diag_phi = diag(b_pm)*tan(acos(microturbine_pf));
params.pm_linear = 40*ones(Nb,1);    % reasonable value 
params.pm_quadratic = 20*ones(Nb,1); % to give some curvature
% pm_space = linspace(0, 0.2, 100);
% plot(pm_space, mean(params.pm_linear)    * pm_space + ...
%                mean(params.pm_quadratic) * pm_space.^2);
params.pd_lower  = zeros(Nb, 1);
params.pd_upper  = zeros(Nb, 1);
params.pd_upper(b_pd) = 0.5;
params.pd_linear = 30*ones(Nb, 1); %must be higher than solar
    % should be lower than the microturbines linear term
params.pd_quadratic = 15*ones(Nb, 1);
if(0),
    pd_space = linspace(0, 0.5, 100);
    plot(pd_space, mean(params.pd_linear)    * pd_space + ...
               mean(params.pd_quadratic) * pd_space.^2);
end
params.S2 = 7.^2*ones(Nb,1); 
    % indirectly effects a limit on the substation injection
params.pi_inverter = 0.0*ones(Nb,1);  % typical value (1/2 ret)
params.beta   = 37;
params.gammaB = 45;
params.gammaS = 19;
%buses_pv = [15 22 31 40 44 50];
%buses_pv = 44;
buses_pv = [44 50];
b_pv = zeros(Nb,1);
b_pv(buses_pv) = 1;
%nominal_pv = 2*b_pv; % smaller PV systems than in SCE model
nominal_pv = 5*b_pv; %SCE 56 nodes (Gan, Li, Topcu and Low)
params.s2_inverter = (1.2*nominal_pv).^2;
inverter_pf = 0.85; % Dall'Anese, Dhople, and Giannakis, 2014
params.phi_inverter = b_pv*tan(acos(inverter_pf));
​
params.alpha = 0.05;
​
%%
v_bounds_tight = struct();
v_bounds_tight.v_upper = 1.02.^2*ones(Nb, 1);
v_bounds_tight.v_lower = 0.98.^2*ones(Nb, 1);
​
v_bounds_loose = struct();
v_bounds_loose.v_upper = 1.03.^2*ones(Nb, 1);
v_bounds_loose.v_lower = 0.97.^2*ones(Nb, 1);
​
v0_bounds = struct();
v0_bounds.v_upper = 1.03.^2;
v0_bounds.v_lower = 0.97.^2;
​
%%
load_max_pf = 0.85; load_phi = tan(acos(load_max_pf));
tnomi_p_load = 1; %how many times the nominal load is the mean
stdev_p_load = 0.2; %standard deviation of the random var
stdev_q_load = load_phi*(tnomi_p_load/3 - stdev_p_load);
% This line adjusts the reactive load's stdev_q considering that 
% the "worst-case" power factor takes place when
% the active load is 3*stdev_p below the mean and reactive load
% is 3*stdev_q in absolute value.
prop_p_avail = 0.5; %proportion of the available p that is 
% randomized via a uniform distribution.
​
n_rlz = 500; % number of realizations of the random vars
hyp.seed = 20;
​
rng(hyp.seed);
random_vars = struct();
random_vars.p_load = ...
    tnomi_p_load*nominal_loads(2:end)*ones(1, n_rlz) ...
    + stdev_p_load*diag(nominal_loads(2:end))*randn(Nb, n_rlz);
random_vars.q_load = ...
    stdev_q_load*diag(nominal_loads(2:end))*randn(Nb, n_rlz);
random_vars.pinv_available = ...
    diag(nominal_pv)*(1-prop_p_avail*rand(Nb, n_rlz));
​
random_vars_mean = struct();
random_vars_mean.p_load = tnomi_p_load*nominal_loads(2:end);
random_vars_mean.q_load = 0*nominal_loads(2:end);
random_vars_mean.pinv_available = (1-prop_p_avail/2)*nominal_pv;
​
first_stage_initial = solve_average (benchmark, params, ...
    random_vars_mean, v_bounds_tight);
​
%nu_initial = 0.2;
​
%%
hyp.n_iterations = n_rlz;
hyp.epsilon0_p0 = 4/50/5;
hyp.epsilon0_v0 = 0.02/50;
hyp.epsilon0_pd = 0.3/50;
hyp.mu0         = 1.5*50*3;
hyp.evaluate_output = 0;
%hyp.stepsize_mode = 'constant';
hyp.stepsize_mode = 'O(1/sqrt(k))';
hyp.precision = 'low';
hyp.r = 0.5;
nu_upper_initial = zeros(Nb, 1); nu_upper_initial(1) = 0;  %0.8;
nu_lower_initial = zeros(Nb, 1); nu_lower_initial(36) = 0; %0.6;
results = stochastic_solver_avg(benchmark, ...
    first_stage_initial, nu_lower_initial, nu_upper_initial, ...
    random_vars, params, ...
    v_bounds_tight, v_bounds_loose,  v0_bounds, hyp, ...
    struct('plot', 1));
​
%%
filename = ['run-' datestr(now)];
filename(16)='_';
filename(filename==':') = [];
save(filename)
display(['Saved ' filename]);
beep

部分程序结果

4 下载链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/485435.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

JAVA面向对象编程 JAVA语言入门基础

类与对象的概念 类 (Class) 和对象 (Object) 是面向对象程序设计方法中最核心的概念。 类是对某一类事物的描述(共性),是抽象的、概念上的定义;而对象则是实际存在的属该类事物的具体的个体(个性),因而也称为实例(In…

网络协议栈--传输层--UDP/TCP协议

目录 本节重点一、再谈端口号1.1 再谈端口号1.2 端口号范围划分1.3 认识知名端口号(Well-Know Port Number)1.4 回答两个问题1.5 netstat1.6 pidof 二、UDP协议2.1 UDP协议段格式2.2 UDP的特点2.3 面向数据报2.4 UDP的缓冲区2.5 UDP使用注意事项2.6 基于UDP的应用层协议2.7 UDP…

知攻善防应急靶场-Linux(2)

前言: 堕落了三个月,现在因为被找实习而困扰,着实自己能力不足,从今天开始 每天沉淀一点点 ,准备秋招 加油 注意: 本文章参考qax的网络安全应急响应和知攻善防实验室靶场,记录自己的学习过程&am…

JAVA学习笔记20(面向对象编程)

1.3 方法递归调用 ​ *阶乘 public int factorial(int n) {if(n 1){return 1;}else{return factorial(n-1)*n;} }1.递归重要规则 1.执行一个方法时,就创建一个新的受保护的独立空间(栈空间) 2.方法的局部变量是独立的,不会相互…

反序列化漏洞简单知识

目录: 一、概念: 二、反序列化漏洞原因 三、序列化漏洞的魔术方法: 四、反序列化漏洞防御: 一、概念: 序列化: Web服务器将HttpSession对象保存到文件系统或数据库中,需要采用序列化的…

Cobalt Strike -- 各种beacon

今天来讲一下cs里面的beacon 其实cs真的功能很强大,自带代理创建,自带beacon通信!!! 一张图,就能说明beacon的工作原理 1.Beacon 每当有一台机器上线之后,我们都会选择sleep时间,…

代码随想录算法训练营Day56 ||leetCode 583. 两个字符串的删除操作 || 72. 编辑距离

647. 回文子串 dp[i][j]表示第i位开始&#xff0c;第j位结束的字符串是否为回文串 class Solution { public:int countSubstrings(string s) {vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false));int result 0;for (int i s.size() - 1…

Redis 教程系列之Redis PHP 使用 Redis(十二)

PHP 使用 Redis 安装 开始在 PHP 中使用 Redis 前&#xff0c; 我们需要确保已经安装了 redis 服务及 PHP redis 驱动&#xff0c;且你的机器上能正常使用 PHP。 接下来让我们安装 PHP redis 驱动&#xff1a;下载地址为:https://github.com/phpredis/phpredis/releases。 P…

Java微服务分布式分库分表ShardingSphere - ShardingSphere-JDBC

&#x1f339;作者主页&#xff1a;青花锁 &#x1f339;简介&#xff1a;Java领域优质创作者&#x1f3c6;、Java微服务架构公号作者&#x1f604; &#x1f339;简历模板、学习资料、面试题库、技术互助 &#x1f339;文末获取联系方式 &#x1f4dd; 往期热门专栏回顾 专栏…

垂直起降机场:飞行基础设施的未来是绿色的

电动垂直起降&#xff08;eVTOL&#xff09;飞机的日益发展为建立一个新的网络来支持它们提供了理由&#xff0c;这将推动开发绿色基础设施新模式的机会。这些电气化的“短途”客运和货运飞机通常被描述为飞行汽车&#xff0c;是区域飞行和城市出租车的未来&#xff0c;有可能提…

为什么 Hashtable 不允许插入 null 键 和 null 值?

1、典型回答 浅层次的来回答这个问题的答案是&#xff0c;JDK 源码不支持 Hashtable 插入 value 值为 null&#xff0c;如以下JDK 源码所示&#xff1a; 也就是JDK 源码规定了&#xff0c;如果你给 Hashtable 插入 value 值为 null 就会抛出空指针异常 并目看上面的JDK 源码可…

2024全新多语言海外抢单刷单系统源码 订单自动匹配 支持分组 代理后台

2024全新多语言海外抢单刷单系统源码 订单自动匹配 支持分组 代理后台 源码下载&#xff1a;https://download.csdn.net/download/m0_66047725/88948076 更多资源下载&#xff1a;关注我。

蓝桥杯基础练习详细解析一(代码实现、解题思路、Python)

试题 基础练习 数列排序 资源限制 内存限制&#xff1a;512.0MB C/C时间限制&#xff1a;1.0s Java时间限制&#xff1a;3.0s Python时间限制&#xff1a;5.0s 问题描述 给定一个长度为n的数列&#xff0c;将这个数列按从小到大的顺序排列。1<n<200 输入格式 第…

吴恩达2022机器学习专项课程(一) 3.6 可视化样例

问题预览 1.本节课主要讲的是什么&#xff1f; 2.不同的w和b&#xff0c;如何影响线性回归和等高线图&#xff1f; 3.一般用哪种方式&#xff0c;可以找到最佳的w和b&#xff1f; 解读 1.课程内容 设置不同的w和b&#xff0c;观察模型拟合数据&#xff0c;成本函数J的等高线…

MQ领消息丢失方案

⼀、哪些场景会丢失消 业务场景&#xff1a;下单⽀付成功后、给⽤户发送消费 ⽤户反馈&#xff1a;⽀付成功以后&#xff0c;没有收到优惠券。原因&#xff1a;⽀付成功的消息丢失了 ⼆、可能丢失消息的环节&#xff1a; 1、订单系统&#xff08;⽣产者&#xff09;向MQ推送…

pytorch 实现线性回归 softmax(Pytorch 04)

一 softmax 定义 softmax 是多分类问题&#xff0c;对决策结果不是多少&#xff0c;而是分类&#xff0c;哪一个。 为了估计所有可能类别的条件概率&#xff0c;我们需要一个有 多个输出的模型&#xff0c;每个类别对应一个输出。为了解决线 性模型的分类问题&#xff0c;我们…

Linux cp、mv命令显示进度条

1.advcpmv 平常使用cp 拷贝大文件时&#xff0c;看不到多久可以完成&#xff0c;虽然加上-v参数也只能看到正在拷贝文件&#xff0c;那就使用以下方法实现 git clone https://github.com/jarun/advcpmv.git cd advcpmv/ bash install.shmv ./advcp /usr/local/bin/ mv ./advmv …

【旅游景点项目日记 | 第二篇】基于Selenium爬取携程网景点详细数据

文章目录 3.基于Selenium爬取携程网景点详细数据3.1前提环境3.2思路3.3代码详讲3.3.1查询指定城市的所有景点3.3.2获取详细景点的访问路径3.3.3获取景点的详细信息 3.4数据库设计3.5全部代码3.6效果图 3.基于Selenium爬取携程网景点详细数据 3.1前提环境 确保安装python3.x环…

生产力工具|安装更新R软件(R、studio)

内容介绍&#xff1a; 安装R软件&#xff1a; 下载 R X64 3.5.1: 访问官方R网站 https://cran.r-project.org/。选择适合Windows版本的安装包。将安装包下载到您的计算机。 本地安装: 运行下载的“R-3.5.1-win.exe”文件。按照安装向导&#xff0c;选择安装路径&#xff0c;取消…

Windows 进程权限浅谈 -- 提权 / 降权

在 Windows 上&#xff0c;用户对权限并不敏感&#xff0c;可能最为直观的是 UAC &#xff0c;但相信很多人已经关掉了它的提示。 但其实安全性早已深入了 Windows 的方方面面。Windows Vista 引入了一个称为强制完整性控制&#xff08;Mandatory Integrity Controls&#xff0…