Python学习从0到1 day18 Python可视化基础综合案例 1.折线图

我默记这段路的酸楚,等来年春暖花开之时再赏心阅读

                                                                  —— 24.3.24

python基础综合案例

数据可视化 — 折线图可视化

一、折线图案例

1.json数据格式

2.pyecharts模块介绍

3.pyecharts快速入门

4.数据处理

5.创建折线图

1.json数据格式

1.什么是json

2.掌握如何使用json进行数据转化

1.什么是json

JSON是一种轻量级的数据交互格式,可以按照JSON指定的格式去组织和封装数据

JSON本质上是一个带有特定格式的字符串

主要功能:json就是一种在各个编程语言中流通的数据格式,负责不同编程语言中的数据传递和交互,类似:

国际通用语言——英语

中国各民族各地区的通用语言——普通话

2.掌握如何使用json进行数据转化

①json格式的数据格式要求:(字典)

{“name”:"admin","age":18}

②也可以是:(字典列表)

[{"name":"admin","age":18},{"name":"root","age":16},{"name":"张三","age":20}]

JSON可以看作是把一个字典或者一个字典列表全部转换成字符串

正常定义为字典或字典列表导入包和方法后就可以进行自动转换

3.演示

'''
演示JSON数据和Python字典的相互转换
'''
import json

# 准备列表,列表内每一个元素都是字典,将其转换为JSON
data1 = [{"name":"张三","age":22},{"name":"李四","age":13},{"name":"王五","age":16}]
json_str1 = json.dumps(data1,ensure_ascii=False) # 如果不写中文,则不需要参数ensure_ascii
print(json_str1)
print(type(json_str1))

# 准备字典,将字典转换为JSON
data2 = {"name":"JayZhou","addr":"台北"}
json_str2 = json.dumps(data2,ensure_ascii=False)
print(json_str2)
print(type(json_str2))

# 将JSON字符串转换为Python数据类型字典列表[{k:v,k:v},{k:v,k:v},{k:v,k:v}]
str = '[{"name": "张三", "age": 22}, {"name": "李四", "age": 13}, {"name": "王五", "age": 16}]'
json_str3 = json.loads(str)
print(json_str3)
print(type(json_str3))

# 将JSON字符串转换为Python数据类型列表{k:v,k:v}
str2 = '{"name":"JayZhou","addr":"台北"}'
json_str4 = json.loads(str2)
print(json_str4)
print(type(json_str4))

# 通过dumps和loads两个json包下的方法就可以将python中的字典或列表转换为json字符串

通过dumps和loads两个json包下的方法就可以将python中的字典或列表转换为json字符串

总结

1.json:是一种轻量级的数据交互格式,采用完全独立于编程语言的格式来存储和表示数据(就是字符串

python语言有很大的优势是因为JSON可以直接和Python的字典或者字典列表进行无缝转换

2.json格式数据转化

        通过json.dumps(data)可以把python中的数据转化为json字符串

        data = json.dumps(data)

如果其中有中文可以带上:ensure_ascii=False参数来确保中文正常转换

        通过json.loads(data)方法把json数据转化为python中的列表或字典

        data = json.loads(data)

2.pyecharts模块介绍

如果想要做出数据可视化效果图,可以借助pyecharts模块来完成

概况: 

Echarts是个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可,而Python是门富有表达力的语言,很适合用于数据处理,当数据分析遇上数据可视化时pyecharts诞生了

pyecharts模块安装

使用在前面学过的pip命令即可快速安装PyEcharts模块

pip install pyecharts

总结

1.开发可视化图表使用的技术栈是:

        Echarts框架的Python版本:PyEcharts包

2.如何安装PyEcharts包:

        pip install pyecharts

3.如何查看官方示例:

        打开官方画廊:

        https://gallery.pyecharts.org/#/README

3.pyecharts快速入门

1.构建一个基础的折线图

2.使用全局配置项设置属性

1.构建一个基础的折线图

基础折线图

①导包,导入Line功能构建折线图对象

from pyecharts.charts import Line

②得到折线图对象

line = Line()

③添加x轴数

line.add_xaxis(["中国","美国","英国"])

⑤添加y轴数据

line.add_yaxis("GDP",[30,20,10])

⑥生成图表

line.render() # 生成图表后会在软件包内生成一个文件,运行这个文件就是生成的图表,可以运行文件也可以在文件右上角打开它

2.使用全局配置项设置属性

pyecharts有哪些配置选项

pyecharts模块中有很多的配置选项,常用到2个类别的选项

        全局配置选项(表结构)

        系列配置选项(数据)

全局配置选项 set_global_opts方法

这里全局配置选型可以通过set_global_opts方法来进行配置,相应的选项和选项的功能如下

3.示例

# ①导包,导入Line功能构建折线图对象
from pyecharts.charts import Line
#  导包,导入控制标题的包
from pyecharts.options import TitleOpts,LegendOpts,ToolboxOpts,VisualMapOpts

# 得到折线图对象,Line对象
line = Line()

# ③给折线图对象添加x轴数
line.add_xaxis(["中国","美国","英国"])

# ④给折线图对象添加y轴数据
line.add_yaxis("GDP",[30,20,10])

# ⑤设置全局变量配置项set_global_opts来设置
line.set_global_opts(
    # ctrl+p 可以查看方法中传递的参数
    title_opts=TitleOpts(title = "GDP展示",pos_left="center",pos_bottom="1%"),    # 控制标题及位置
    legend_opts=LegendOpts(is_show=True),   # 是否显示图例(默认显示)
    toolbox_opts=ToolboxOpts(is_show=True),  # 工具箱是否显示
    visualmap_opts=VisualMapOpts(is_show=True)  # 视觉映射是否显示
)

# ⑥通过render方法,将代码生成为图像
line.render()

 运行成功后,会自动在包里生成一个文件

总结

1.pyecharts模块中有很多的配置选项,常用到三个类别的选项:

        全局配置选项

        系列配置选项

2.全局配置项能做什么?

        配置图表的标题

        配置图例

        配置鼠标移动效果

        配置工具栏

        等整体配置项

4.数据处理

1.能够通过json模块对数据进行处理

json可视化

根据json可视化掌握数据的层级关系

进入网站www.ab173.com

这是一个懒人软件,点击JSON相关、点击JSON视图

# 处理数据

# 美国疫情数据
f_us = open("D:/2LFE/Desktop/Python/资料/可视化案例数据/折线图数据/美国.txt","r",encoding="utf-8")
us_data = f_us.read()   # 美国的全部内容

# 小日本疫情数据
f_jp = open("D:/2LFE/Desktop/Python/资料/可视化案例数据/折线图数据/日本.txt","r",encoding="utf-8")
jp_data = f_jp.read()   # 日本的全部内容

# 印度疫情数据
f_in = open("D:/2LFE/Desktop/Python/资料/可视化案例数据/折线图数据/日本.txt","r",encoding="utf-8")
in_data = f_in.read()   # 印度的全部内容

# 去掉不合JSON规范的开头,每个国家的数据不规范的内容不相同,需查看文档进行改变
us_data = us_data.replace("jsonp_1629344292311_69436(","")
jp_data = jp_data.replace("jsonp_1629350871167_29498(","")
in_data = in_data.replace("jsonp_1629350745930_63180(","")

# 去掉不合JSON规范的结尾,结尾不规范数据相同,注意变量名的修改
us_data = us_data[:-2] # 序列的切片
jp_data = jp_data[:-2] # 序列的切片
in_data = in_data[:-2] # 序列的切片

# JSON转Python字典
us_dict = json.loads(us_data)
jp_dict = json.loads(jp_data)
in_dict = json.loads(in_data)

# 获取trend key
us_trend_data = us_dict['data'][0]['trend']
jp_trend_data = jp_dict['data'][0]['trend']
in_trend_data = in_dict['data'][0]['trend']

# 获取日期数据,用于x轴,取2020年(到314下标结束)
us_x_data = us_trend_data['updateDate'][:314]
jp_x_data = jp_trend_data['updateDate'][:314]
in_x_data = in_trend_data['updateDate'][:314]

# 获取确诊数据,用于y轴,取2020年(到314下标结束)
us_y_data = us_trend_data['list'][0]['data'][:314]
jp_y_data = jp_trend_data['list'][0]['data'][:314]
in_y_data = in_trend_data['list'][0]['data'][:314]

5.生成图表

# 生成图表
line = Line()   # 构建折线图对象,Line()的图表对象

# 添加x轴数据
line.add_xaxis(us_x_data)   # x轴是三个国家公用的,所以一个国家的就好

# 添加y轴数据,y轴数据不共用,label_opts功能:当前这个图表中标签属性是否显示
line.add_yaxis("美国确诊人数", us_y_data, label_opts=LabelOpts(is_show=False))     # 添加美国的y轴数据
line.add_yaxis("日本确诊人数", jp_y_data, label_opts=LabelOpts(is_show=False))     # 添加日本的y轴数据
line.add_yaxis("印度确诊人数", in_y_data, label_opts=LabelOpts(is_show=False))     # 添加印度的y轴数据

6.设置全局选项

# 设置全局选项
line.set_global_opts(
    # 标题设置
    title_opts=TitleOpts(title="2020年美日印三国确诊人数对比折线图", pos_left="center", pos_bottom="1%")
)

 7.整体代码

# 演示可视化需求1:折线图开发
# 导入包
import json    # josn可视化包
from pyecharts.charts import Line   # 读取文件的函数,导入line功能
from pyecharts.options import TitleOpts, LabelOpts  # 标题设置Title包,系列属性LabelOpts包


# 处理数据

# 美国疫情数据
f_us = open("E:\python.learning\折线图数据\美国.txt","r",encoding="utf-8")
us_data = f_us.read()   # 美国的全部内容

# 小日本疫情数据
f_jp = open("E:\python.learning\折线图数据\日本.txt","r",encoding="utf-8")
jp_data = f_jp.read()   # 日本的全部内容

# 印度疫情数据
f_in = open("E:\python.learning\折线图数据\印度.txt","r",encoding="utf-8")
in_data = f_in.read()   # 印度的全部内容

# 去掉不合JSON规范的开头,每个国家的数据不规范的内容不相同,需查看文档进行改变
us_data = us_data.replace("jsonp_1629344292311_69436(","")
jp_data = jp_data.replace("jsonp_1629350871167_29498(","")
in_data = in_data.replace("jsonp_1629350745930_63180(","")

# 去掉不合JSON规范的结尾,结尾不规范数据相同,注意变量名的修改
us_data = us_data[:-2] # 序列的切片
jp_data = jp_data[:-2] # 序列的切片
in_data = in_data[:-2] # 序列的切片

# JSON转Python字典
us_dict = json.loads(us_data)
jp_dict = json.loads(jp_data)
in_dict = json.loads(in_data)

# 获取trend key
us_trend_data = us_dict['data'][0]['trend']
jp_trend_data = jp_dict['data'][0]['trend']
in_trend_data = in_dict['data'][0]['trend']

# 获取日期数据,用于x轴,取2020年(到314下标结束)
us_x_data = us_trend_data['updateDate'][:314]
jp_x_data = jp_trend_data['updateDate'][:314]
in_x_data = in_trend_data['updateDate'][:314]

# 获取确诊数据,用于y轴,取2020年(到314下标结束)
us_y_data = us_trend_data['list'][0]['data'][:314]
jp_y_data = jp_trend_data['list'][0]['data'][:314]
in_y_data = in_trend_data['list'][0]['data'][:314]

# 生成图表
line = Line()   # 构建折线图对象,Line()的图表对象

# 添加x轴数据
line.add_xaxis(us_x_data)   # x轴是三个国家公用的,所以一个国家的就好

# 添加y轴数据,y轴数据不共用,label_opts功能:当前这个图表中标签属性是否显示
line.add_yaxis("美国确诊人数", us_y_data, label_opts=LabelOpts(is_show=False))     # 添加美国的y轴数据
line.add_yaxis("日本确诊人数", jp_y_data, label_opts=LabelOpts(is_show=False))     # 添加日本的y轴数据
line.add_yaxis("印度确诊人数", in_y_data, label_opts=LabelOpts(is_show=False))     # 添加印度的y轴数据

# 设置全局选项
line.set_global_opts(
    # 标题设置
    title_opts=TitleOpts(title="2020年美日印三国确诊人数对比折线图", pos_left="center", pos_bottom="1%")
)

# 调用render方法,生成图表
line.render()   # 折线图对象.render方法

# 关闭文件对象
f_us.close()
f_in.close()
f_jp.close()

运行结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/483623.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

用kimichat炒股:查找比亚迪、特斯拉等电动车产业链相关股票

kimichat可以联网检索,搜索结果更加准确、智能。 在kimichat中输入提示词:找出同时在比亚迪产业链和特斯拉产业链的企业 根据您提供的搜索结果中的信息,我们可以找出同时在比亚迪产业链和特斯拉产业链中的企业。以下是从搜索结果中提取的相关…

【动态规划】Leetcode 70. 爬楼梯

【动态规划】Leetcode 70. 爬楼梯 解法1 ---------------🎈🎈题目链接🎈🎈------------------- 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 输入…

先进电机技术 —— 长线缆驱动电机面临哪些问题?

一、长线驱动问题简述 电机变频驱动器(VFD)输出侧采用长线缆驱动电机运行时,将会面对多种问题,主要包括但不限于: 此图片来源于网络 1. **电压降**: - 长线缆的电阻会导致电压降增大,当电…

智能优化算法 | Matlab实现牛顿-拉夫逊优化算法Newton-Raphson-based optimize(内含完整源码)

文章目录 效果一览文章概述源码设计参考资料效果一览 文章概述 智能优化算法 | Matlab实现牛顿-拉夫逊优化算法Newton-Raphson-based optimize(内含完整源码) 源码设计 % ------------------------------------------------------------------------------------------------…

UNI-APP读取本地JSON数据

首先要把json文件放在static文件夹下 然后在要读取数据的页面导入 import data from ../../static/data.json读取数据: onLoad() {console.log(data, data)}, 打印出来的就是JSON文件里的数据了

【SQL】1527. 患某种疾病的患者(like;通配符)

前述 知识点回顾: MySQL 使用OR在LIKE查询中比较多个字段 %:表示任意字符(包括0个或多个)_:表示任意单个字符匹配空格:直接用空格就行,例如,% DIAB1%可以匹配字符串ACNE DIAB100 …

利用免费 GPU 部署体验大型语言模型推理框架 vLLM

vLLM简介 vLLM 是一个快速且易于使用的 LLM(大型语言模型)推理和服务库。 vLLM 之所以快速,是因为: 最先进的服务吞吐量 通过 PagedAttention 高效管理注意力键和值内存 连续批处理传入请求 使用 CUDA/HIP 图快速模型执行 量…

瑞芯微RK3576|触觉智能:开启科技新篇章

更多产品详情可关注深圳触觉智能官网! “瑞芯微,创新不止步!”——全新芯片RK3576即将震撼登场。指引科技风潮,创造未来无限可能!这款芯片在瑞芯微不断创新和突破的道路上,不仅是对过往成就的完美延续&…

Python爬虫-批量爬取星巴克全国门店

前言 本文是该专栏的第22篇,后面会持续分享python爬虫干货知识,记得关注。 本文笔者以星巴克为例,通过Python实现批量爬取目标城市的门店数据以及全国的门店数据。 具体的详细思路以及代码实现逻辑,跟着笔者直接往下看正文详细内容。(附带完整代码) 正文 地址:aHR0cHM…

基于python+vue电影院订票信息管理系统flask-django-php-nodejs

根据此问题,研发一套电影院订票信息管理系统,既能够大大提高信息的检索、变更与维护的工作效率,也能够方便信息系统的管理运用,从而减少信息管理成本,提高效率。 该电影院订票信息管理系统采用B/S架构、前后端分离以及…

Nacos部署(二)Linux部署Nacos2.3.x集群环境

😊 作者: 一恍过去 💖 主页: https://blog.csdn.net/zhuocailing3390 🎊 社区: Java技术栈交流 🎉 主题: Nacos部署(二)Linux部署Nacos2.3.x集群环境 ⏱️…

隐私计算实训营第四讲-SecretFlow 环境安装与部署

SecretFlow 环境安装与部署 SecretFlow环境的安装和部署指南,包括仿真模式和生产模式的配置方法。 1. 环境安装 要安装SecretFlow环境,请按照以下步骤操作: 1.1 创建并激活Conda环境 创建名为 sf 的新Conda环境,并指定Python版…

#Linux(SSH软件安装及简单使用)

(一)发行版:Ubuntu16.04.7 (二)记录: (1)终端键入(root权限)安装 apt-get install openssh-server 安装时遇到报错 E: Could not get lock /var/lib/dpkg/…

LeetCode---389周赛

题目列表 3083. 字符串及其反转中是否存在同一子字符串 3084. 统计以给定字符开头和结尾的子字符串总数 3085. 成为 K 特殊字符串需要删除的最少字符数 3086. 拾起 K 个 1 需要的最少行动次数 一、字符串及其反转中是否存在同一子字符串 直接暴力枚举即可,代码…

网络行为管理系统招标模板

项目名称:网络行为管理系统招标 一、项目背景 随着信息技术的迅猛发展,网络安全和数据保护已成为企业和组织面临的关键挑战。为了确保网络环境的安全、合规,并实现对网络行为的有效管理和审计,我们特此启动网络行为管理系统的招…

maya打开bvh脚本

目录 maya打开脚本编辑器 运行打开bvh脚本 maya导出bvh脚本 maya打开脚本编辑器 打开Maya软件,点击右下角 “脚本编辑器” 运行打开bvh脚本 https://github.com/jhoolmans/mayaImporterBVH/blob/master/bvh_importer.py import os import re from typing impo…

OD C卷 - 反射计数

反射计数(200) 给定一个包含0 、1的二维矩阵;一个物体从给定的初始位置出发,在给定的速度下移动,遇到矩阵的边缘则发生镜面反射,无论物体经过0还是1,都不影响其速度;经过t时间单位后…

学习次模函数-第2章 定义

纵观本专著,我们认为及其幂集(即, 所有子集的集合),其基数为。我们也考虑一个实值集函数,使得。 与凸函数的一般约定相反(见附录A),我们不允许函数有无穷大的值。 次模分…

文件包含一-WEB攻防-PHP应用文件包含LFIRFI伪协议编码算法无文件利用黑白盒

演示案例: 文件包含-原理&分类&利用&修复黑盒利用-VULWEB-有无包含文件白盒利用-CTFSHOW-伪协议玩法 #文件包含-原理&分类&利用&修复 1、原理 程序开发人员通常会把可重复使用的函数写到单个文件中,在使用某些函数时&#xff0c…

基于物理的实时渲染 -- PBR

简介 PBR,或者用更通俗一些的称呼是指基于物理的渲染(Physically Based Rendering),它指的是一些在不同程度上都基于与现实世界的物理原理更相符的基本理论所构成的渲染技术的集合。正因为基于物理的渲染目的便是为了使用一种更符合物理学规律的方式来模…