使用langchain与你自己的数据对话(二):向量存储与嵌入

 

之前我以前完成了“使用langchain与你自己的数据对话(一):文档加载与切割”这篇博客,没有阅读的朋友可以先阅读一下,今天我们来继续讲解deepleaning.AI的在线课程“LangChain: Chat with Your Data”的第三门课:向量存储与嵌入。

Langchain在实现与外部数据对话的功能时需要经历下面的5个阶段,它们分别是:Document Loading->Splitting->Storage->Retrieval->Output,如下图所示:

 在上一篇博客:文档加载与切割中我已经介绍了如何使用Langchain来加载外部的文档,以及如何切割文档,之所以要对文档做加载与切割的操作,是因为外部数据类型和属性有所不同,比如外部数据可能是pdf, text, 网页,youtube视频等,要读取不同类型的外部数据我们就需要有专门的Loader来加载这些数据,所以我们就需要各种类型的文档加载器,当数据被加载器加载以后,接下来我们需要做文档的切割,这是因为外部数据的体量可能比较大,如pdf文档可能会有几十页,几百页的内容,所以我们需要将文档内容按一点尺寸(chunk_size)均匀的切成小块(chunks), 在上一篇博客中我们介绍了几种Langchain常用的文档切割器如RecursiveCharacterTextSplitter, CharacterTextSplitter,TokenTextSplitter,MarkdownHeaderTextSplitter等,其中Langchain默认使用RecursiveCharacterTextSplitter切割器。当文档被切割以后,加下来就到了嵌入(Embeddings)和向量存储(vectorstores)的环节,如下图所示:

 所谓的向量存储是指被切割的文档需要经过向量化操作以后存储到向量数据库的过程,因为大型语言模型(LLM)无法理解文字信息(只能理解数字),所以我们必须对文字信息进行编码,这里说的编码就是只嵌入(Embeddings), 嵌入操作可以将文本转换成数字编码并以向量的形式存储在向量数据库中,如下图所示:

 当文档被切割成块(chunks)后,每一个块都会经嵌入操作后转换成向量并存储在向量数据库中,当用户对文档内容提出问题时,用户的问题也会经嵌入操作后被转换成向量并与向量数据库中的所有向量做相似度比较,最后找出与问题最相关的n个向量,如下图所示:

 当找到与用户问题最相关的n个向量以后,这些向量会被还原成原始文本,然后将用户的问题和这些文本信息发送给LLM, LLM会针对用户的问题对这些文本内容做提炼和汇总,最后给出正确合理的答案,如下图所示:

整个与文档对话的过程大致就是这样,下面我们来实操一下上面的嵌入和向量存储的过程,不过首先我们还是需要做一下些基础性工作,比如设置一下openai的api key:

import os
import openai
import sys
sys.path.append('../..')

from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # read local .env file

openai.api_key  = os.environ['OPENAI_API_KEY']

Document Loading & Splitting

接下来我们首先来实现文档的加载和切割,这里我们会加载一组吴恩达老师著名的机器学习课程cs229的pdf讲义稿:

from langchain.document_loaders import PyPDFLoader

# Load PDF
loaders = [
    # Duplicate documents on purpose - messy data
    PyPDFLoader("docs/cs229_lectures/MachineLearning-Lecture01.pdf"),
    PyPDFLoader("docs/cs229_lectures/MachineLearning-Lecture01.pdf"),
    PyPDFLoader("docs/cs229_lectures/MachineLearning-Lecture02.pdf"),
    PyPDFLoader("docs/cs229_lectures/MachineLearning-Lecture03.pdf")
]
docs = []
for loader in loaders:
    docs.extend(loader.load())

需要说明一下的是这里我们加载了2篇相同的pdf文档:Lecture01.pdf,之所以要加载两篇相同的pdf文档,是为了后面我们需要做一些测试看看当文档内容相同的时候LLM的表现。当文档完成加载以后,下面我们就需要对文档进行切割,首先我们需要创建一个文档切割器RecursiveCharacterTextSplitter:

# Split
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size = 1500,
    chunk_overlap = 150
)

这里关于参数chunk_size ,和chunk_overlap 的含义在文档加载与切割这篇博客中已经详细说明过了,这里不再赘述。当文档切割器创建完成以后,我们可以开始切割文档的操作:

#切割文档
splits = text_splitter.split_documents(docs)

#查看切割后文档的数量
print(len(splits))

 这里我们看到切割后的文档长度是209,也就是说所有的pdf文档被切割成了209块(chunks),我们可以查看其中的某一块的文档内容:

splits[0]

 

 我们看到被切换的文档块中包含了文档的内容(page_content)和元数据(metadata),在元数据中记录了文档的位置和该块内容所在的页数。那么现在在splits中就包含了209个这样的文档块。

Embeddings

所谓的嵌入(Embeddings)是一种文本的编码的方法,它可以一段文字转换成一定长度的一组向量,下面我们来做一下简单的embedding测试:

from langchain.embeddings.openai import OpenAIEmbeddings
embedding = OpenAIEmbeddings()


sentence1 = "我喜欢小狗。"
sentence2 = "我喜欢小动物。"
sentence3 = "我今天心情很差。"

embedding1 = embedding.embed_query(sentence1)
embedding2 = embedding.embed_query(sentence2)
embedding3 = embedding.embed_query(sentence3)

这里我们有三句简单的中文句子,前两句表达人和动物之间的关系,第三句表达人的心情,所以前两句的含义应该比较相似,后第三句和前两句的含义完全不同,下面我们可以通过计算两个向量的点积来得到两个向量的相似度:

np.dot(embedding1, embedding2)

 

np.dot(embedding1, embedding3)

 

np.dot(embedding2, embedding3)

 

 我们可以看到embedding1与embedding2之间有较高的相似性达到了0.94,而embedding3与embedding1和embedding2的相似度只都只有0.8以下,这说明第一句和第二句话有较高的相似度。下面我们看一下经过embedding操作以后的结果是怎么样的:

print(embedding1)

 

 这里我们看到经过embdding操作后生成的向量是一个python的list, 其中包含了很多数字,下面我们再看一下这个embdding的长度:

print(len(embedding1))

 这里我们可以看到经过embdding操作以后生成的向量的长度是1536,也就是说由1536个数字来表示了被embdding的这句文本,我们也可以看成是由1536个维度来表示这句文本。

向量数据库

当我们知道了Embedding的原理以后,接下来我们来介绍一种向量数据库Chroma,Chroma 是开源嵌入(Embedding)数据库。Chroma 通过为大型语言模型(LLM)提供可嵌入的知识、事实和技能,让构建大型语言模型(LLM)的应用程序变得更加容易,如下图所示:

 接下来我们来实际操作创建向量数据库的过程,并且将生成的向量数据库保存在本地。当我们在创建Chroma数据库时,我们需要传递如下参数:

  • documents: 切割好的文档对象
  • embedding: embedding对象
  • persist_directory: 向量数据库存储路径
from langchain.vectorstores import Chroma

#向量数据库保存位置
persist_directory = 'docs/chroma/'

#创建向量数据库
vectordb = Chroma.from_documents(
    documents=splits,
    embedding=embedding,
    persist_directory=persist_directory
)


#查看向量数据库中的文档数量
print(vectordb._collection.count())

 

 这里我们看到向量数据库中存储这209个向量,这和我们之前切割文档后的splits 中的数量是一至的,这说明原来209个文档块已经被转换成了209个向量并且被保存在了Chroma数据库中。

相似度搜索(Similarity Search)

当文档被切割并经embedding操作后转换成向量存储到Chroma数据库中后,我们可以对Chroma数据库中的向量进行相似度的比较,也就是我们可以模拟用户提出问题,然后去Chroma执行相似内容搜索,并返回与问题相似度较高的文本内容:

question = "is there an email i can ask for help"

docs = vectordb.similarity_search(question,k=3)

#打印文档数量
print(len(docs))

这里我们要求向量数据库对问题进行相似度搜索,找出和问题最相关的3个(k=3)文档。下面我们查看其中的一个文档的内容:

docs[0].page_content

 我们看到第一篇文档中包含了"email"这个单词,这和我们的问题显然是相关的。接下来我们来实现向量数据库的持久化:

vectordb.persist()

执行了persist()操作以后向量数据库才真正的被保存到了本地,下次在需要使用该向量数据库时我们只需要从本地加载数据库即可,无需再根据原始文档来生成向量数据库了。

失败的应用场景

虽然有了向量数据库,基本上可以让我们轻松完成 80% 的相似性搜索任务。但也存在一些失败的场景,比如下面的例子:

question = "what did they say about matlab?"

docs = vectordb.similarity_search(question,k=5)

这里我们要求向量数据库搜索5个和问题相关的答案,但是大家还记得之前我们在创建文档加载器时加载了两篇相同的文档(Lecture01.pdf),所以现在向量数据库中应该有重复的向量,因此如果当用户的问题和Lecture01.pdf中的内容相关时,向量数据库会返回重复的内容:

docs[0]

docs[1]

 

 这两我们看到docs[0]和docs[1]的内容是完全一样的,这是因为我们之前加载了重复的文档(Lecture01.pdf)所导致的。如何避免让向量数据库返回重复的内容,我们将在下一篇博客中讨论这个问题,下面我们再看一种失败的场景,这里我们要求向量数据库在第三篇原始文档()中搜索相关答案:

question = "what did they say about regression in the third lecture?"

docs = vectordb.similarity_search(question,k=5)

for doc in docs:
    print(doc.metadata)

从上面的返回结果中我们看到,虽然我们要求向量数据库只能从第三篇文档中搜索相关答案,但是从返回结果的元数据中我们看到第一篇(Lecture01.pdf)和第二篇(Lecture02.pdf)的内容也在其中,这与我们的要求(问题)相违背,因为我们只要求搜索第三篇文档(Lecture03.pdf)即可。这似乎说明向量数据库并没有很好的理解问题的语义。下面我们查看一下返回的最后一个文档的内容(Lecture01.pdf):

print(docs[4].page_content)

 这里我们看到docs[4]对应的是Lecture01.pdf中的第8页的内容,其中也包含了“regression”,这和我们的问题相关。

关于如何避免上述失效的应用场景,我们将会在下一篇博客中进行讨论。

总结

今天我们学习了嵌入和向量数据库的基本原理,并且对嵌入(Embeddings)和开源数据库Chroma进行了实际的操作,并观察了它们的返回结果,同时我们还发现了两种Chroma数据库相似搜索失效的场景。关于如何避免产生失效的结果我们将在下一篇博客中进行讨论。

 参考资料

🏡 Home | Chroma

Chroma | 🦜️🔗 Langchain

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/48234.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

spring-authorization-server (1.1.1)自定义认证

前言 注意:我本地没有生成公钥和私钥,所以每次启动项目jwkSource都会重新生成,导致之前认证的token都会失效,具体如何生成私钥和公钥以及怎么配置到授权服务器中,网上有很多方法自行实现即可 之前有个项目用的0.0.3的…

4、Linux驱动开发:设备-设备号设备号注册

目录 🍅点击这里查看所有博文 随着自己工作的进行,接触到的技术栈也越来越多。给我一个很直观的感受就是,某一项技术/经验在刚开始接触的时候都记得很清楚。往往过了几个月都会忘记的差不多了,只有经常会用到的东西才有可能真正记…

医学案例|ROC曲线

一、案例介绍 研究者想要进行“糖化血蛋白”的研究,对糖尿病患者和非糖尿病患者各100名检测糖化血红蛋白(HbAlc)含量,希望可以研究糖化血蛋白对患有糖尿病的情况是否有诊断价值,如果有最佳的诊断界值是多少。 二、问…

Android Banner - ViewPager

现在来给viewpager实现的banenr加上自动轮播 自动轮播的原理,使用handler的延迟消息来实现。 自动轮播实现如下内容 开始轮播&停止轮播 可配置轮播时长、轮播方向 通过自定义属性来配置轮播时长,方向 感知生命周期,可见时开始轮播&…

Activity 生命周期

在Android开发中,Activity是应用程序的主要组件之一,它代表应用程序中的一个屏幕或界面。当用户与应用程序进行交互时,Activity会根据用户的操作而启动、暂停、恢复或停止等,这些状态变化被称为Activity的生命周期。 Activity的生…

springboot创建并配置环境(二) - 配置基础环境

文章目录 一、介绍二、配置系统属性和环境变量三、配置自定义属性命令行参数四、作为应用配置信息 一、介绍 在上一篇文章:springboot创建并配置环境(一) - 创建环境中我们探讨了springboot是如何根据当前应用程序类型去创建对应的环境实例的。接下来探讨如何去配置…

亚马逊云科技联合霞光社发布《2013~2023中国企业全球化发展报告》

中国企业正处于全球聚光灯下。当企业全球化成为时代发展下的必然趋势,出海也从“可选项”变为“必选项”。中国急速扩大的经济规模,不断升级的研发和制造能力,都在推动中国企业不断拓宽在全球各行业的疆域。 过去十年,是中国企业…

管理后台低代码PaaS平台源码:点击鼠标,就能编程

低代码平台源码10大核心功能:1建模引擎 、2 移动引擎 、3,流程引擎 5.报表引擎、6安全引擎、 7 API引擎 、8.应用集成引擎、 9.代码引擎、 10.公式引擎。 一、低代码开发特色 1.低代码开发:管理后台提供了一系列易于使用的低代码开发工具,使企业可以快速…

TSINGSEE青犀视频安防监控视频平台EasyCVR新增密码复杂度提示

智能视频监控平台TSINGSEE青犀视频EasyCVR可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等,以及支持厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等,能对外分发RTSP、RTM…

getInputStream has already been called for this request 问题记录

问题背景 HttpServletRequest.getReader() HttpServletRequest.getInputStream() 不能在过滤器中读取一次二进制流(字符流),又在另外一个Servlet中读取一次,即一个InputSteam(BufferedReader)对象在被读取完成后,将无…

安全第一天

1. 编码 1.1 ASCLL编码 ASCII 是基于拉丁字母的一套电脑编码系统,主要用于显示现代英语和其他西欧语言。它是最通用的信息交换标准,并等同于国际标准ISO/IEC 646。 1.2 URL编码 URL:(统一资源定位器、定位地址,俗称网页…

Ubuntu 曝Linux漏洞,近 40% 用户受影响

Bleeping Computer 网站披露,Wiz 研究人员 s.Tzadik 和 s.Tamari 发现 Ubuntu 内核中存在两个 Linux 漏洞 CVE-2023-32629 和 CVE-2023-2640,没有特权的本地用户可能利用其在设备上获得更高权限,影响大约 40% 的 Ubuntu 用户。 Ubuntu 是目前…

KingFunsion工程开发规范——关系库使用规范

KingFunsion工程开发规范——关系库使用规范 2023-07-07 20:10雷工笔记 哈喽,大家好,我是雷工。 今天学习KingFunsion工程开发规范之关系库使用规范。 第一章 统一规范 1.1.表字符集默认使用utf8; 1.2.禁止在数据库中存储大文件&#xff0…

MySQL数据库分库分表备份(shell脚本)

创建目录 mkdir /server/scripts 一、使用脚本实现分库备份 1、创建脚本并编写 [rootlocalhost scripts]# vim bak_db_v1.sh #!/bin/bash ######################################### # File Name:bak_db_v1.sh # Version: V1.0 # Author:Shen QL # Email:17702390000163.co…

上门居家养老小程序社区养老小程序开发方案详解

居家养老管理社区养老小程序有哪些功能呢? 1.选择养老服务类型 医疗护理,家政服务预约,上门助浴、上门做饭,上门助餐,生活照护,康复理疗、精神慰藉、委托代办等。各项服务的详情介绍。 2.选择预约时间 选择…

【电网异物检测硕士论文摘抄记录】电力巡检图像中基于深度学习的异物检测方法研究

根据国家电力行业发展报告统计,截止到 2018 年,全国电网 35 千伏及以上的输电线路回路长度达到 189 万千米,220 千伏及以上输电线路回路长度达73 万千米。截止到 2015年,根据国家电网公司的统计 330 千伏及以上输电线路故障跳闸总…

F12开发者工具的简单应用

目录 elements 元素 1、元素的定位和修改 2、UI自动化应用 console 控制台 sources 源代码 network 网络 1、定位问题 2、接口测试 3、弱网测试 performance 性能 memory 存储 application 应用 recorder 记录器 界面展示如下(设置中可以切换中英文&am…

Stable-Diffusion-Webui部署SDXL0.9报错参数shape不匹配解决

问题 已经在model/stable-diffusion文件夹下放进去了sdxl0.9的safetensor文件,但是在切换model的时候,会报错model的shape不一致。 解决方法 git pullupdate一些web-ui项目就可以,因为当前项目太老了,没有使用最新的版本。

android 如何分析应用的内存(十二)——HWASan

android 如何分析应用的内存(十二) 上一篇介绍了ASan,这次介绍ASan的加强版HWASan HWASan的使用 从NDK r21和Android 10 开始,Android支持HWAsan。HWAsan仅仅支持arm64架构的设备。 系统级准备 HWASan需要系统的支持&#xf…

【Terraform学习】TerraformCloud入门介绍(快速入门)

TerraformCloud入门介绍 什么是 TerraformCloud? Terraform Cloud是Hashicorp Terraform的SaaS版本。 免费版功能 免费版功能包括版本控制集成、远程计划和实施远程计划和实施、通知及webhook、全http API驱动、状态管理、模拟计划、私有化模块注册器以及全HTTP界…