C语言 自定义类型:结构体

目录

前言

一、结构体类型

1.1 结构体的声明

1.2 结构体变量的创建和初始化

1.3 结构体的特殊声明

1.4 结构体的自引用

二、结构体的对齐

2.1 对齐规则

2.2 内存对齐的原因

2.3 修改默认对齐数

2.4 结构体传参

三、结构体实现位段

3.1 位段的内存分配

3.2 段的跨平台问题

3.3 位段的应用

3.4 位段使用的注意事项

总结


前言

C语言中通常分为内置类型,和自定义类型,今天我们来了解一下自定义类型中结构体的内容。


一、结构体类型

1.1 结构体的声明

结构体是我们自定义的数据类型,可以存放不同的数据类型。语法定义:

struct tag
{
   member-list; //结构体成员
}variable-list;//结构体变量

例如描述一个学生:

struct Stu
{
   char name[20];//名字
   int age;//年龄
   char sex[5];//性别
   char id[20];//学号
}; //分号不能丢

Stu为结构体名,其中的name[20],age,sex,id均为结构体的成员。

结构体变量有三种方式声明:

struct Stu
{
   char name[20];//名字
   int age;//年龄
   char sex[5];//性别
   char id[20];//学号
} s1; //初始化声明

struct Stu s2;//全局声明

int main(){
     struct Stu s3;//局部声明
}

1.2 结构体变量的创建和初始化

#include <stdio.h>
struct Stu
{
	char name[20];//名字
	int age;//年龄
	char sex[5];//性别
	char id[20];//学号
};
int main()
{
	//按照结构体成员的顺序初始化
	struct Stu s = { "张三", 20, "男", "20230818001" };
	printf("name: %s\n", s.name);
	printf("age : %d\n", s.age);
	printf("sex : %s\n", s.sex);
	printf("id : %s\n", s.id);

	//按照指定的顺序初始化
	struct Stu s2 = { .age = 18, .name = "lisi", .id = "20230818002", .sex = "⼥" };
	printf("name: %s\n", s2.name);
	printf("age : %d\n", s2.age);
	printf("sex : %s\n", s2.sex);
	printf("id : %s\n", s2.id);
	return 0;
	}

访问结构体成员的有两种方法:

结构体变量.结构体成员//直接访问
结构体指针->结构体成员//间接访问

1.3 结构体的特殊声明

在声明结构的时候,可以不完全的声明。
比如:
//匿名结构体类型
struct
{
   int a;
   char b;
   float c;
}x;
struct
{
 int a;
 char b;
 float c;
}a[20], *p;
上⾯的两个结构在声明的时候省略掉了结构体标签(tag)。
//在上⾯代码的基础上,下⾯的代码合法吗?
p = &x;
警告
编译器会把上⾯的两个声明当成完全不同的两个类型,所以是 非法 的。
匿名的结构体类型,如果没有对结构体类型重命名的话,基本上只能使用⼀次

1.4 结构体的自引用

在结构中包含⼀个类型为该结构本⾝的成员是否可以呢?
比如,定义⼀个链表的节点:
struct Node
{
  int data;
  struct Node next;
};

上面的定义是否可行呢?其实是不行的,因为当结构体包含⼀个类型为该结构本⾝的成员时,结构体大小sizeof(struct Node)就会无限大,因为不断的嵌套了一个又一个的结构体。

正确的自引用方式:

struct Node
{
  int data;
  struct Node * next;
};

我们把存放下一个结构体本身换成了存放地址,地址的大小是可以计算的。

在结构体自引用使用的过程中,夹杂了 typedef 对匿名结构体类型重命名,也容易引入问题,看
下面的代码,可行吗?
typedef struct
{
   int data;
   Node* next;
}Node;
答案是不行的,因为Node是对前⾯的匿名结构体类型的重命名产生的,但是在匿名结构体内部 提前使用 Node类型来创建成员变量,这是不行的。
解决方案如下:定义结构体不要使用匿名结构体了
typedef struct Node
{
   int data;
   struct Node* next;
}Node;

二、结构体的对齐

我们已经了解了结构体的基本使用了,那结构体的大小如何计算呢,现在我们就要讲一讲结构体内存对齐,来计算结构体的大小。

2.1 对齐规则

⾸先得掌握结构体的 对齐规则
1. 结构体的 第⼀个成员 对齐到和结构体变量起始位置 偏移量为0 的地址处
2. 其他成员变量要对齐到某个数字(对齐数)的 整数倍 的地址处。
    对齐数 = 编译器默认的⼀个对齐数与该成员变量大小的 较小值
       - VS 中默认的值为 8
       - Linux中 gcc 没有默认对齐数,对齐数就是成员自⾝的⼤小
3. 结构体总大小为 最大对齐数 (结构体中每个成员变量都有⼀个对齐数,所有对齐数中最大的)的
整数倍
4. 如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构
体的整体大小就是所有最大对齐数( 含嵌套结构体中成员的对齐数 )的整数倍。
让我们来看看下面这些例子:
//练习1
struct S1
{            //变量大小  默认对齐数   对齐数
	char c1; //   1         8          1
	int i;   //   4         8          4
	char c2; //   1         8          1
};
printf("%zd\n", sizeof(struct S1));

第一个char对齐到和结构体变量起始位置偏移量为0的地址处

第二个int对齐数为4,因为其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处,所以对齐到4,大小为4个字节。

第三个char对齐数为1,对齐到9。

结构体大小为最大对齐数4的整数倍,就是12。

上图右边数字为偏移量,x为被浪费的内存。

//练习2
struct S2
{            //变量大小  默认对齐数   对齐数
	char c1; //   1         8          1 
	char c2; //   1         8          1
    int i;  //   4         8          4
};
printf("%zd\n", sizeof(struct S2));

跟练习1类似,只不过顺序不一样。

此时结构体大小为最大对齐数4的整数倍8。

//练习3
struct S3
{            //变量大小  默认对齐数   对齐数
   double d; //   8         8          8 
	char c;  //   1         8          1
    int i;  //   4         8          4
};
printf("%zd\n", sizeof(struct S3));

第一个double类型结构体变量起始位置偏移量为0的地址处。

char类型就为偏移量8,int要整数倍所以从12开始,到16,刚好是最大偏移量的2倍,所以结构体大小为16。

//练习4-结构体嵌套问题
struct S4
{          //变量大小  默认对齐数   对齐数
 char c1; //      1         8        1
 struct S3 s3; // 8         8        8
 double d;//      8         8        8
};
printf("%d\n", sizeof(struct S4));

嵌套结构体的对齐数为结构体成员的最大对齐数。所以结构体大小为8的4倍为32。

练习输出结果如下:

2.2 内存对齐的原因

1. 平台原因 (移植原因):
  不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些 特定类型的数据 ,否则抛出硬件异常。
2. 性能原因
数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问 仅需要⼀次访问 。假设⼀个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对齐成8的倍数,那么就可以用⼀个内存操作来读或者写值了。否则,我们可能需要执行两次内存访问,因为对象可能被分放在两个8字节内存块中。
总体来说:结构体的内存对齐是拿 空间 来换取 时间 的做法。

所以在设计结构体时我们要做到既要满足,又要节省空间,该怎么做呢?

让占用空间小的成员尽量集中在⼀起

struct S1
{
  char c1;
  int i;
  char c2;
 };

struct S2
 {
  char c1;
  char c2;
  int i;
 };
S1 S2 类型的成员⼀模⼀样,但是 S1 S2 所占空间的大小有了⼀些区别。
S1的大小为12,S2的大小为8,S2比S1更加节省空间。

2.3 修改默认对齐数

在VS 中默认对齐数为8,我们也可以进行修改

#include <stdio.h>
#pragma pack(1)//设置默认对⻬数为1
struct S
{
 char c1;
 int i;
 char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认
int main()
{
   //输出的结果为6
   printf("%d\n", sizeof(struct S));
   return 0;
}

我们通过#pragma 这个预处理指令,在结构体在对齐方式不合适的时候,我们可以自己更改默认对齐数。

2.4 结构体传参

#include<stdio.h>

struct S
{
	int data[1000];
	int num;
};
struct S s = { {1,2,3,4}, 1000 };
//结构体传参
void print1(struct S s)
{
	printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
	printf("%d\n", ps->num);
}
int main()
{
	print1(s); //传结构体
	print2(&s); //传地址
	return 0;
}

上面两种传参方式,哪一种更好

答案是:首选print2函数。

原因:
函数传参的时候,参数是需要 压栈 ,会有时间和空间上的系统开销。 如果传递⼀个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降。
结论
结构体传参的时候,要传结构体的地址。

三、结构体实现位段

现在我们来了解一下结构体实现位端
位段的声明和结构是类似的,有两个不同:
1. 位段的成员必须是 int、unsigned int 或signed int ,在C99中位段成员的类型也可以
选择其他类型。
2. 位段的成员名后边有⼀个 冒号 和⼀个 数字
比如:
struct A
{
   int _a:2;
   int _b:5;
   int _c:10;
   int _d:30;
};

A就是⼀个位段类型。那位段A所占内存的大小是多少?
为什么会是8呢,那让我们来了解一下位端的内存分配吧。

3.1 位段的内存分配

1. 位段的成员可以是 int unsigned int signed int 或者是 char 等类型
2. 位段的空间上是按照需要以 4个字节 ( int )或者 1个字节 ( char )的方式来开辟的。
3. 位段涉及很多不确定因素, 位段是不跨平台的 ,注重可移植的程序应该避免使用位段。
//⼀个例⼦
struct S
{
   char a:3;
   char b:4;
   char c:5;
   char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;

位段在空间中的开辟如下:

3.2 段的跨平台问题

1. int 位段被当成有符号数还是无符号数是不确定的。
2. 位段中最大位的数目不能确定。(16位机器最⼤16,32位机器最大32,写成27,在16位机器会
出问题。
3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
4. 当⼀个结构包含两个位段,第⼆个位段成员比较大,无法容纳于第⼀个位段剩余的位时,是舍弃
剩余的位还是利用,这是不确定的。
总结:
跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

3.3 位段的应用

下图是网络协议中,IP数据报的格式,我们可以看到其中很多的属性只需要几个bit位就能描述,这里使用位段,能够实现想要的效果,也节省了空间,这样⽹络传输的数据报大小也会较小⼀些,对网络的畅通是有帮助的。

3.4 位段使用的注意事项

位段的几个成员 共有 同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位置处是没有地址的。内存中每个字节分配⼀个地址,⼀个字节内部的bit位是没有地址的。
所以 不能对位段的成员使用&操作符 ,这样就不能使用scanf直接给位段的成员输入值,只能是先输入放在⼀个变量中,然后赋值给位段的成员。
struct A
{
   int _a : 2;
   int _b : 5;
   int _c : 10;
   int _d : 30;
};

int main()
{
   struct A sa = {0};
   scanf("%d", &sa._b);//这是错误的
 
   //正确的⽰范
   int b = 0;
   scanf("%d", &b);
   sa._b = b;
   return 0;
}


总结

上述文章讲了C语言中结构体类型,讲了结构体的对齐,结构体实现位段。希望对你有所帮助。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/480988.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

39 openlayers 对接地图图层 绘制点线面圆

前言 这里主要是展示一下 openlayers 的一个基础的使用 主要是设计 接入地图服务器的 卫星地图, 普通的二维地图, 增加地区标记 增加 省市区县 的边界标记 基础绘制 点线面园 等等 测试用例 <template><div style"width: 1920px; height:1080px;" &g…

软考高级:软件架构评估概述和例题

作者&#xff1a;明明如月学长&#xff0c; CSDN 博客专家&#xff0c;大厂高级 Java 工程师&#xff0c;《性能优化方法论》作者、《解锁大厂思维&#xff1a;剖析《阿里巴巴Java开发手册》》、《再学经典&#xff1a;《Effective Java》独家解析》专栏作者。 热门文章推荐&am…

计算机网络:分层体系结构

计算机网络&#xff1a;分层体系结构 基本分层概述各层次的任务物理层数据链路层网络层运输层应用层 数据传递过程分层体系常见概念实体协议服务 基本分层概述 为了使不同体系结构的计算机网络都能互联&#xff0c;国际标准化组织于 1977 年成立了专门机构研究该问题。不久他们…

鸿蒙一次开发,多端部署(十一)交互归一

对于不同类型的智能设备&#xff0c;用户可能有不同的交互方式&#xff0c;如通过触摸屏、鼠标、触控板等。如果针对不同的交互方式单独做适配&#xff0c;会增加开发工作量同时产生大量重复代码。为解决这一问题&#xff0c;我们统一了各种交互方式的API&#xff0c;即实现了交…

基于ssm的勤工助学管理系统+数据库+报告+免费远程调试

项目介绍: 基于ssm的勤工助学管理系统。Javaee项目&#xff0c;ssm项目。采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通过Spring SpringMvc Mybatisplus VuelayuiMaven来实现。有管理员和老…

国内AI领域的新星:Kimi与GPT的较量,谁主沉浮?

近期&#xff0c;国产大型人工智能模型Kimi频繁成为众多行业领袖讨论的焦点。这些来自不同领域的专家和领袖们&#xff0c;似乎都在对Kimi的性能和能力给予高度评价。在这两年国产AI模型的快速发展中&#xff0c;尽管市场上涌现出了许多新面孔&#xff0c;但真正能够在技术和应…

Tomcat整体架构

一、Tomcat介绍 开源的java web应用服务器&#xff0c;实现了java EE的部分技术规范&#xff0c;如 java servlet、javaServer Pages、 JavaWebSocket等&#xff1b; 核心&#xff1a;http服务器Servlet容器 二、Tomcat两个核心功能 1、处理Socket连接&#xff0c;负责网络字节…

jQuery 其他方法

文章目录 1. jQuery 拷贝对象2. 多库共存3. jQuery 插件3.1 瀑布流插件3.2 图片懒加载技术3.3 bootstrap JS 组件3.4 bootstrap JS 插件*案例--todolist布局 1. jQuery 拷贝对象 拷贝过去的对象属性值会覆盖原来对象的值。 **浅拷贝&#xff1a;**简单数据类型就直接被拷贝&am…

第十三届蓝桥杯物联网试题(省赛)

做后感悟&#xff1a; OLED显示函数需要一直显示&#xff0c;所以在主函数中要一直循环&#xff0c;为了确保这个检错功能error只输出一次&#xff0c;最好用中断串口进行接收数据&#xff0c;数据收完后自动进入中断函数中&#xff0c;做一次数据检查就好了&#xff0c;该开灯…

正基塑业邀您参观2024长三角快递物流供应链与技术装备展览会

2024.7.8-10 杭州国际博览中心 科技创新&#xff0c;数字赋能 同期举办&#xff1a;数字物流技术展 新能源商用车及物流车展 电商物流包装展 冷链物流展 展会介绍 2024长三角快递物流供应链与技术装备展览会&#xff08;杭州&#xff09;&#xff0c;于2024年7月8-10日在杭州…

QGraphicsView 实例3地图浏览器

主要介绍Graphics View框架&#xff0c;实现地图的浏览、放大、缩小&#xff0c;以及显示各个位置的视图、场景和地图坐标 效果图: mapwidget.h #ifndef MAPWIDGET_H #define MAPWIDGET_H #include <QLabel> #include <QMouseEvent> #include <QGraphicsView&…

Tomcat 服务器部署和 IDEA 配置 Tomcat

(一) Tomcat 简介 Tomcat是Apache软件基金会一个核心项目&#xff0c;是一个开源免费的轻量级Web服务器&#xff0c;支持Servlet/JSP少量JavaEE规范。 概念中提到了JavaEE规范&#xff0c;那什么又是JavaEE规范呢? JavaEE: Java Enterprise Edition,Java企业版。指Java企业级…

【Java初阶(二)】分支与循环

❣博主主页: 33的博客❣ ▶文章专栏分类: Java从入门到精通◀ &#x1f69a;我的代码仓库: 33的代码仓库&#x1f69a; 目录 1.前言2.顺序结构3.分支循环3.1if语句3.2switch语句 4.循环结构4.1while循环4.2 break和continue4.3 for循环4.4 do while循环 5.输入输出5.1输出5.2输…

三级数据库技术知识点(详解!!!)

1、从功能角度数据库应用系统可以划分为表示层、业务逻辑层、数据访问层、数据持久层四个层次&#xff0c;其中负责向表示层直接传送数据的是业务逻辑层。 【解析】表示层负责所有与用户交互的功能;业务逻辑层负责根据业务逻辑需要将表示层获取的数据进行组织后&#xff0c;传…

提升Midjourney风格化的三个技巧

1. 引言 在前篇博文中&#xff0c;我们详细讲述了Midjourney的新功能风格参考的一些基础使用方法&#xff0c;事实上我们可以通过控制参数和提示权重进行更多的自定义操作&#xff0c;在本文中&#xff0c;我将向大家介绍我在网上搜集到的一些提升风格化效果的三个技巧。 闲话…

阿里云服务器租用一年多少钱?2024年最新阿里云租用价格

2024年阿里云服务器租用费用&#xff0c;云服务器ECS经济型e实例2核2G、3M固定带宽99元一年&#xff0c;轻量应用服务器2核2G3M带宽轻量服务器一年61元&#xff0c;ECS u1服务器2核4G5M固定带宽199元一年&#xff0c;2核4G4M带宽轻量服务器一年165元12个月&#xff0c;2核4G服务…

NC 现金流量查询 节点 多账簿联查时,根据所选择的列来判断明细和现金流量联查按钮是否可用,根据添加列选择监听事件处理。

NC 现金流量查询 节点 多账簿联查时&#xff0c;根据所选择的列来判断明细和现金流量联查按钮是否可用&#xff0c;如下图的情况&#xff1a; 在现金流量查询界面UI类的initTable(QueryConditionVO conVO)方法中添加列选择监听事件即可&#xff0c;如下&#xff1a; // 列监听…

【Android】【Bluetooth Stack】蓝牙电话协议之拨打电话分析(超详细)

1. 精讲蓝牙协议栈&#xff08;Bluetooth Stack&#xff09;&#xff1a;SPP/A2DP/AVRCP/HFP/PBAP/IAP2/HID/MAP/OPP/PAN/GATTC/GATTS/HOGP等协议理论 2. 欢迎大家关注和订阅&#xff0c;【蓝牙协议栈】和【Android Bluetooth Stack】专栏会持续更新中.....敬请期待&#xff01…

【Spring框架】单元测试:JUnit

个人名片&#xff1a; &#x1f43c;作者简介&#xff1a;一名大三在校生&#xff0c;喜欢AI编程&#x1f38b; &#x1f43b;‍❄️个人主页&#x1f947;&#xff1a;落798. &#x1f43c;个人WeChat&#xff1a;hmmwx53 &#x1f54a;️系列专栏&#xff1a;&#x1f5bc;️…

Filter介绍使用案例

文章目录 一、Filter概念二、Filter快速入门定义类&#xff0c;实现Filter接口&#xff0c;并重写其所有方法 三、Filter执行流程四、Filter使用细节1、Filter拦截路径配置2、过滤器链 五、案例 一、Filter概念 二、Filter快速入门 定义类&#xff0c;实现Filter接口&#xff0…