刷题DAY31 | LeetCode 455-分发饼干 376-摆动序列 53-最大子序和

455 分发饼干(easy)

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

思路:贪心法

为了满足更多的小孩,就不要造成饼干尺寸的浪费。

大尺寸的饼干既可以满足胃口大的孩子也可以满足胃口小的孩子,那么就应该优先满足胃口大的。

这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。

可以尝试使用贪心策略,先将饼干数组和小孩数组排序。

然后从后向前遍历小孩数组,用大饼干优先满足胃口大的,并统计满足小孩数量。
如图:

这个例子可以看出饼干 9 只有喂给胃口为 7 的小孩,这样才是整体最优解,并想不出反例,那么就可以撸代码了。

代码实现1:

// 版本一
class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(), g.end());
        sort(s.begin(), s.end());
        int index = s.size() - 1; // 饼干数组的下标
        int result = 0;
        for (int i = g.size() - 1; i >= 0; i--) { // 遍历胃口
            if (index >= 0 && s[index] >= g[i]) { // 遍历饼干
                result++;
                index--;
            }
        }
        return result;
    }
};
  • 时间复杂度:O(nlogn)
  • 空间复杂度:O(1)

也可以换一个思路,小饼干先喂饱小胃口

代码实现2:

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(),g.end());
        sort(s.begin(),s.end());
        int index = 0;
        for(int i = 0; i < s.size(); i++) { // 饼干
            if(index < g.size() && g[index] <= s[i]){ // 胃口
                index++;
            }
        }
        return index;
    }
};

时间复杂度:O(nlogn)
空间复杂度:O(1)

详细解析:
思路视频
代码实现文章


376 摆动序列(medium)

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。

例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。

相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。

给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。

思路:贪心法

本题要求通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。来分析一下,要求删除元素使其达到最大摆动序列,应该删除什么元素呢?

用示例二来举例,如图所示:
在这里插入图片描述
局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。

整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列。

局部最优推出全局最优,并举不出反例,那么试试贪心!

(为方便表述,以下说的峰值都是指局部峰值)

实际操作上,其实连删除的操作都不用做,因为题目要求的是最长摆动子序列的长度,所以只需要统计数组的峰值数量就可以了(相当于是删除单一坡度上的节点,然后统计长度)

这就是贪心所贪的地方,让峰值尽可能的保持峰值,然后删除单一坡度上的节点

在计算是否有峰值的时候,大家知道遍历的下标 i ,计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i]),如果prediff < 0 && curdiff > 0 或者 prediff > 0 && curdiff < 0 此时就有波动就需要统计。

这是我们思考本题的一个大题思路,但本题要考虑三种情况:

  • 情况一:上下坡中有平坡
  • 情况二:数组首尾两端
  • 情况三:单调坡中有平坡

情况一:上下坡中有平坡

例如 [1,2,2,2,1]这样的数组,如图:
在这里插入图片描述
它的摇摆序列长度是多少呢? 其实是长度是 3,也就是我们在删除的时候 要不删除左面的三个 2,要不就删除右边的三个 2。

如图,可以统一规则,删除左边的三个 2:
在这里插入图片描述
在图中,当 i 指向第一个 2 的时候,prediff > 0 && curdiff = 0 ,当 i 指向最后一个 2 的时候 prediff = 0 && curdiff < 0。

如果我们采用,删左面三个 2 的规则,那么 当 prediff = 0 && curdiff < 0 也要记录一个峰值,因为他是把之前相同的元素都删掉留下的峰值。

所以我们记录峰值的条件应该是: (preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0),为什么这里允许 prediff == 0 ,就是为了 上面我说的这种情况。

情况二:数组首尾两端

所以本题统计峰值的时候,数组最左面和最右面如何统计呢?

题目中说了,如果只有两个不同的元素,那摆动序列也是 2。

例如序列[2,5],如果靠统计差值来计算峰值个数就需要考虑数组最左面和最右面的特殊情况。

因为我们在计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i])的时候,至少需要三个数字才能计算,而数组只有两个数字。

这里我们可以写死,就是 如果只有两个元素,且元素不同,那么结果为 2。

不写死的话,如何和我们的判断规则结合在一起呢?

可以假设,数组最前面还有一个数字,那这个数字应该是什么呢?

之前我们在 讨论 情况一:相同数字连续 的时候, prediff = 0 ,curdiff < 0 或者 >0 也记为波谷。

那么为了规则统一,针对序列[2,5],可以假设为[2,2,5],这样它就有坡度了即 preDiff = 0,如图:

376.摆动序列1
针对以上情形,result 初始为 1(默认最右面有一个峰值),此时 curDiff > 0 && preDiff <= 0,那么 result++(计算了左面的峰值),最后得到的 result 就是 2(峰值个数为 2 即摆动序列长度为 2)

情况三:单调坡度有平坡
在版本一中,我们忽略了一种情况,即 如果在一个单调坡度上有平坡,例如[1,2,2,2,3,4],如图:
在这里插入图片描述
图中,我们可以看出,之前的逻辑在三个地方记录峰值,但其实结果因为是 2,因为 单调中的平坡 不能算峰值(即摆动)。

之所以会出问题,是因为我们实时更新了 prediff。

那么我们应该什么时候更新 prediff 呢?

我们只需要在 这个坡度 摆动变化的时候,更新 prediff 就行,这样 prediff 在 单调区间有平坡的时候 就不会发生变化,造成我们的误判。

代码实现:

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        if (nums.size() <= 1) return nums.size();
        int curDiff = 0; // 当前一对差值
        int preDiff = 0; // 前一对差值
        int result = 1;  // 记录峰值个数,序列默认序列最右边有一个峰值
        for (int i = 0; i < nums.size() - 1; i++) {
            curDiff = nums[i + 1] - nums[i];
            // 出现峰值
            if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
                result++;
                preDiff = curDiff; // 注意这里,只在摆动变化的时候更新prediff
            }
        }
        return result;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

详细解析:
思路视频
代码实现文章


53 最大子序和(medium)

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组是数组中的一个连续部分。

思路:贪心法or动态规划,这一部分使用贪心

贪心贪的是哪里呢?

如果 -2 1 在一起,计算起点的时候,一定是从 1 开始计算,因为负数只会拉低总和,这就是贪心贪的地方!

局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。

全局最优:选取最大“连续和”

局部最优的情况下,并记录最大的“连续和”,可以推出全局最优。

从代码角度上来讲:遍历 nums,从头开始用 count 累积,如果 count 一旦加上 nums[i]变为负数,那么就应该从 nums[i+1]开始从 0 累积 count 了,因为已经变为负数的 count,只会拖累总和。

这相当于是暴力解法中的不断调整最大子序和区间的起始位置。

区间的终止位置,其实就是如果 count 取到最大值了,及时记录下来。例如如下代码:

if (count > result) result = count;

这样相当于是用 result 记录最大子序和区间和(变相的算是调整了终止位置)。

代码实现:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int result = INT32_MIN;
        int count = 0;
        for (int i = 0; i < nums.size(); i++) {
            count += nums[i];
            if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置)
                result = count;
            }
            if (count <= 0) count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
        }
        return result;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

详细解析:
思路视频
代码实现文章

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/480892.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

「发稿帮」权重媒体发稿的优势,资源有哪些?

传媒如春雨&#xff0c;润物细无声&#xff0c;大家好&#xff0c;我是51媒体胡老师。 权重媒体发稿的优势主要包括以下方面&#xff1a; 获得更好的排名&#xff1a;高权重媒体在搜索引擎中的排名通常更靠前&#xff0c;这意味着在这些媒体上发布的内容更容易被用户发现和访问…

搞了半天blender整动画这么爽,骨骼重定向一回,动作就可以到处套用,和音频对轨也好使

我们搞到了运动数据&#xff08;可能是bvh文件&#xff0c;也可能是fbx文件&#xff09;之后&#xff0c;想要让某个静态的模型动起来。 我们假定用的是Tpose的模型&#xff08;因为我这个bvh文件是Tpose用的&#xff0c;所以为了动作映射不出问题&#xff0c;优先整的这种模型…

IPC网络摄像头媒体视屏流MI_VIF结构体

一个典型的IPC数据流 下图是一个典型的IPC数据流模型&#xff0c;流动过程如下&#xff1a; 1. 建立Vif->Vpe->Venc的绑定关系&#xff1b; 2. Sensor 将数据送入vif处理&#xff1b; 3. Vif 将处理后的数据写入Output Port申请的内存&#xff0c;送入下一级&#xff1b;…

基于python+vue的街道办管理系统flask-django-php-nodejs

在此基础上&#xff0c;结合现有街道办管理体系的特点&#xff0c;运用新技术&#xff0c;构建了以 python为基础的街道办管理信息化管理体系。首先&#xff0c;以需求为依据&#xff0c;根据需求分析结果进行了系统的设计&#xff0c;并将其划分为管理员和用户二种角色和多个主…

GTC AI 2024:人工智能的未来展望

在2024年GTC AI大会上&#xff0c;NVIDIA推出了多项创新技术和产品&#xff0c;涵盖了从新一代GPU平台到AI超级计算和量子计算云服务等多个领域。 新一代GPU平台 Blackwell Blackwell是为生成式AI时代设计的新一代GPU平台&#xff0c;与前代相比&#xff0c;在FP8训练性能上提…

数据透视表进阶:多维数据透视表与案例演示

同比指的是&#xff1a;和去年比 环比指的是&#xff1a;和上个月比 小技巧&#xff1a;数据透视表消失了&#xff1a;点击字段列表 同比 右键---值的显示方式---差异--年&#xff08;上一个&#xff09; 环比 右键选择时间--然后选择月份 改小数点 组合 右键--组合--然后…

【mysql 127错误】mysql启动报错mysqld.service: Failed with result ‘exit-code‘.

无网环境&#xff0c;mysql 安装 出现如下错误 [rootmysql tools]# systemctl status mysqld.service ● mysqld.service - MySQL ServerLoaded: loaded (/usr/lib/systemd/system/mysqld.service; enabled; vendor preset: disabled)Active: failed (Result: exit-code) since…

Charles 工具如何做断点测试?

软件测试面试刷题&#xff0c;这个小程序&#xff08;永久刷题&#xff09;&#xff0c;靠它快速找到工作了&#xff01;&#xff08;刷题APP的天花板&#xff09;【持续更新最新版】-CSDN博客 在测试工作过程中&#xff0c;我们经常会在程序的某一行或者某一环节设置断点&…

对于HR来说,什么才是好的人才测评系统工具?

对于HR来说&#xff0c;选用一个合适的测评工具&#xff0c;我想不外乎以下几点&#xff1a; 1、成本可控 不是所有的HR都能申请到足够的资金&#xff0c;去做专业的人才测评&#xff0c;尤其是中小企业&#xff0c;这可是一笔不小 的开支。即使是基层普通岗位的成本&#xff…

Redis入门到实战-第二弹

Redis入门到实战 Redis安装官网地址Redis概述Redis-server安装Redis-stack-server使用(可选)Redisinsight安装(可选)更新计划 Redis安装 官网地址 声明: 由于操作系统, 版本更新等原因, 文章所列内容不一定100%复现, 还要以官方信息为准 https://redis.io/Redis概述 Redis是…

Typecho 博客文章评论添加显示 UserAgent(UA)的功能

本篇文章实现了为 Typecho 博客文章评论添加显示 UserAgent&#xff08;UA&#xff09;的功能本功能可替代 UserAgent 插件&#xff0c;更美观、简洁且好看 效果显示 大概就是这样了&#xff0c;实际效果请看我的评论&#xff01; 目前可以识别的操作系统以及浏览器 食用方…

NacosException: http error, code=403、NacosimeException——报错解决方法【Nacos2.x】

1、NacosException报错内容为&#xff1a; NacosException: http error, code403,msguser not found!,dataIdapplication-dev.yml,groupDEFAULT_GROUP,tenant连不上是因为成功开启鉴权后&#xff0c;所使用的Spring Cloud服务被拦截&#xff0c;需要在配置中添加Nacos用户名和…

深度学习图像处理02:Tensor数据类型

上一讲深度学习图像处理01&#xff1a;图像的本质&#xff0c;我们了解到图像处理的本质是对矩阵的操作。这一讲&#xff0c;我们讲介绍深度学习图像处理的基本数据类型&#xff1a;Tensor类型。 在深度学习领域&#xff0c;Tensor是一种核心的数据结构&#xff0c;用于表示和…

Vscode初建Vue时几个需要注意的问题

首先放图 注意点1.打开文件夹时&#xff0c;可以是VUE2 或者其他&#xff0c;但不能是VUE&#xff0c;会报错 注意点2.终端输入命令“npm init -y" npm init -y -y 的含义&#xff1a;yes的意思&#xff0c;在init的时候省去了敲回车的步骤&#xff0c;生成的默认的packag…

【三种方法】求一个整数存储在内存中二进制中的1的个数附两道课外练习题

题目&#xff1a;求一个整数存储在内存中的二进制中的1的个数 目录 法一&#xff1a;取模与取余 法二&#xff1a;按位与和移位操作符 法三&#xff1a;利用算法去掉二进制中最右边的1 课外练习1&#xff1a;用位运算判断一个数是否是2的次方数 课外练习2&#xff1a;编…

【Word自动化办公】使用python-docx对Word进行操作

目录 一、环境安装 二、文档各组成结构获取 2.1 组成结构讲解 2.2 段落run对象的切分标准 三、获取整篇文档内容 四、写入指定样式的数据 4.1 通过add_paragraph与add_run参数添加样式 4.2 单独设置文本样式 五、添加标题 六、换行符&换页符 七、添加图片数据 …

64位下使用回调函数实现监控(下)

线程监控&保护 PsSetCreateThreadNotifyRoutine 线程监控使用到的API相对于进程监控简单&#xff0c;使用到PsSetCreateThreadNotifyRoutine&#xff0c;而这个值并不能像进程操作的API一样进行操作&#xff0c;这里我们首先先使用这个API来进行线程的监控 NotifyRoutine…

wayland(xdg_wm_base) + egl + opengles 使用 Assimp 加载材质文件Mtl 中的纹理图片最简实例(十六)

文章目录 前言一、3d 立方体 model 属性相关文件1. cube.obj2. cube.Mtl3. 纹理图片 cordeBouee4.jpg二、代码实例1. 依赖库和头文件1.1 assimp1.2 stb_image.h2. egl_wayland_obj_cube.cpp3. Matrix.h 和 Matrix.cpp4. xdg-shell-client-protocol.h 和 xdg-shell-protocol.c5.…

部署Zabbix Agents添加使能监测服务器_Linux平台_Yum源/Archive多模式

Linux平台 一、从yum源脚本安装部署Zabbix-Agent,添加Linux Servers/PC 概述 Zabbix 主要有以下几个组件组成: Zabbix Server:Zabbix 服务端,Zabbix的核心组件,它负责接收监控数据并触发告警,还负责将监控数据持久化到数据库中。 Zabbix Agent:Zabbix客户端,部署在被监…

使用Python抓取抖音直播间数据的简易指南【第152篇—抓取数据】

使用Python抓取抖音直播间数据的简易指南 说明&#xff1a;本文已脱敏&#xff0c;隐去地址。 在这个数字化时代&#xff0c;直播已经成为了人们获取信息、娱乐和社交的重要方式之一。抖音作为全球知名的短视频平台&#xff0c;其直播功能也备受用户青睐。本文将介绍如何使用Py…