基于拉格朗日-遗传算法的最优分布式能源DG选址与定容(Matlab代码实现)

目录

1 概述

2 数学模型

2.1 问题表述

2.2 DG的最佳位置和容量(解析法)

2.3 使用 GA 进行最佳功率因数确定和 DG 分配 

3 仿真结果与讨论

 3.1 33 节点测试配电系统的仿真

3.2 69 节点测试配电系统仿真

 4 结论


1 概述

为了使系统网损达到最低值,人们提出了多种方法来确定分布式发电机组的最优位置和容量。
本文将解析法和遗传算法相结合,用于配电网中多个分布式电源的优化配置,使系统网损最小。
这种组合保证了多个分布式发电机组配置的收敛精度和速度。在本文中,在配电网网损最小化时,同时考虑分布式电源的有功功率、功率因数和位置。如果DG是由DG所有者安装的,则该实用程序将仅规定DG的最大发电量。但是,如果DG是由它安装的,则DG的大小和位置都将由该实用程序确定。将该方法应用于33节点和69节点试验配电网。仿真结果表明,与其他方法相比,该方法具有更低的损耗。

本文提出了一种新的方法,这是一种混合方法,它使用遗传算法搜索大范围的位置组合和分布式电源的功率因数,并采用解析方法计算每个分布式电源的位置和容量。虽然这是以要求预先指定DG单位的数量为代价来实现的,但这为检验不同数量 DG 战略布局的好处开辟了潜力。

将该方法应用于33节点和69节点试验配电网,结果表明了该方法在配电网分布式发电机组优化配置中的准确性和有效性。本文创新点如下:

分析和启发式搜索方法相结合,同时实现高速和准确的收敛。考虑将松弛节点的有功潮流对分布式电源产生的有功功率的依赖性作为最小化配电网网损的新约束。
利用分布式电源最优输出有功功率的确定性方程,根据网损系数和网络需求,对配电网网损最小化问题进行了解析解。在最小化配电网损耗的过程中,同时考虑分布式电源的有功功率、功率因数和位置。
本论文的结构如下:

第二节数学模型
第三节对多个DG单元放置的仿真和结果进行了研究和讨论。

最后,第四节对本文进行了总结。

2 数学模型

2.1 问题表述

网络中的有功网损可以表示为不同机组发电量的函数,根据下面的关系,称为Kron方程:

         

等式(1)可以表示为以下矩阵形式:

   

在(2)中,矩阵B、B0和B00是损耗系数矩阵。一般来说,这些系数不是恒定的,并且依赖于负荷值和发电量。但是,它们可以在系统运行的基本情况下计算。
本文考虑了如下假设:配电网是一个在松弛节点馈电的放射状系统,用数字1标识并连接到子配电电网络或输电网络,分布式电源具有恒定的功率因数。


2.2 DG的最佳位置和容量(解析法)

假设在使用恒定功率因数(PF_{N1}PF_{N2},.....PF_{Ng})的母线Kn1、Kn2、...中安装了Ng个DG单元。假设松弛母线为发电单元,则该网络中有n_{g}+1个发电单元。网损可按(1)计算。
假设DG安装在母线2、3、…、n_{g}+1上。如果(1)相对于p_{i}的导数为零,则网络损耗将是最小的。
应当注意,P_{2}...P_{NG}+1在(1)中指示由不同DG产生的功率是独立的,并且由松弛母线P_{1}产生的功率如下所示依赖于这些变量:

     

 应当注意,假设PD在网络的特定状态下是恒定的。

对(3)进行微分,可以得到 

由于 ∂PL/∂Pi 和 ∂PD/∂Pi 等于 0,所以 (4) 可以写成如下:

     

如(5)所示,P1取决于不同DG的发电量。另一方面,在系统损耗最小的情况下,松弛母线产生的有功功率变化与DG机组产生的有功功率变化的比值等于-1。为了使(1)在(3)的约束下达到最小,采用了拉格朗日松弛法,具体如下:

偏微分函数应该等于零,也就是:

方程(8)可以写成矩阵形式,如下:

   

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

可以使用以下等式从 (9) 计算 P:

  

其中 x、E 和 F 可以分别根据以下等式计算:

      

P的每个元素确定如下:

      

对于已知的x值,可以根据(10)计算出最佳的P_{i}s,将(10)-(14)代入(3),可以写出以下公式:

    

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

展开 (15) 得出以下等式:

  

 其中参数 a、b 和 c 基于以下等式计算:

a通过下式进行计算:

      

通过将 E 从 (12) 中代入, (17) 可以写为:

  

由于 B = BT, (18) 可简化如下:

b 根据以下等式计算:

    

考虑 (13),b 可以根据以下等式计算:

最后,c可以按下式进行计算:

  

等式 (16) 有如下两个根:

由于 b 是负数 [考虑 (21)],x1 是一个很大的数,对应的 Pi 也有很大的值 [根据 (14)]。这个答案是不可接受的,因为单位中的 Pi 太大了。因此,以下答案是唯一可以接受的答案:

  

使用 (10)–(24),确定 P_{i}s的最佳值。


2.3 使用 GA 进行最佳功率因数确定和 DG 分配 

在本节中,DG功率因数及其位置被确定为具有系统损耗的最小值。遗传算法是一种通用的优化方法,已被用于不同领域的优化问题。遗传算法分几个步骤进行,如:

在本文中,每个DG单元的优化问题都考虑了三个变量。这些变量是DG的有功功率、DG的功率因素和DG的位置。DG的有功功率是通过解析方案和数学方法得到的(24)。功率因数和DG的位置分别通过使用连续和离散的GA来确定。在GA中,染色体是问题变量,也就是功率因数和DG的位置。因此,假设有ng个DG单元,GA中染色体的长度将等于2ng,包括ng个功率因数的基因(PF1, PF2, ..., PFn)和ng个DG连接位置的基因(D1, D2, ..., Dn)。

          

                          图1 本文所考虑的染色体形态。

换句话说,在GA过程的第一步,一组可能的答案被随机产生,这些答案被称为方案或染色体。本文认为一个染色体的形式如图1所示。在下一步中,将根据每个染色体的适合度为其分配一个数字,作为可能的答案。上述数字由适应度函数决定,适应度函数将由GA进行优化。最后,GA通过选择操作符并根据染色体的适配度选择一些染色体进行交叉、变异和替换操作。这些运算符产生一个新的群体,该过程将被重复,直到达到停止条件。为了计算与染色体相对应的适配函数,根据(2)计算网络损失,并利用(24)确定DG的最佳功率世代。在功率流运行后,根据(1)确定电力系统损失,并将其分配给一个染色体作为其适配值。

                      

 GA 应该通过改变功率因数和不同 DG 的位置来寻找适应度函数的最小值。本文采用分析方法和启发式搜索方法相结合的方法解决了分布式电源优化分配问题,如图 2 所示。使用该方法的主要好处如下

由于分布式电源的功率余量代数太广,GA收敛速度慢,可能无法得出准确的解。本文采用遗传算法确定分布式发电机组的安装位置及其功率因数,并采用解析法确定分布式发电机组产生的最佳功率。

仅使用解析方法会导致复杂且非线性的方程,因为应计算损耗系数相对于 DGs 功率因数的微分,并且损耗系数是 DGs 功率因数的非线性和复杂函数。此外,DGs 位置是一个离散参数,它对 DG 位置的导数是没有意义的。因此,启发式搜索算法应该被用于优化DG分配。考虑到这两个问题,本文提出了分析和启发式搜索相结合的方法。

        

                                     图2 所提出方法的流程图

3 仿真结果与讨论

将该方法应用于图3和图4所示的两个试验配电网(33节点和69节点系统)。该算法在Matlab环境下实现,并使用MATPOWER软件进行潮流计算。
在本研究中,分布式发电有两种不同的运行模式:分布式发电只产生有功功率(单位功率因数模式)和分布式发电可以产生有功和无功(非单位功率因数模式)。

                     

                                       图3 33节点测试配电系统

   

                              图4 69节点测试配电系统

 3.1 33 节点测试配电系统的仿真

本节将在以下两种情况下考虑两种不同的DG运行模式。

3.1.1 情景1:DG运行的统一功率因数模式。

在这种情况下,假设DG产生有功功率,而不产生/消耗无功功率。使用建议的方法在网络中分配不同数量的DG。在表1中,建议的方法与其他方法进行了比较,即损失敏感系数(LSF)、改进的分析法(IA)和穷举负载流(ELF)方法[33]。从表1中可以看出,所提出的方法在降低损耗方面比其他方法有更好的表现。在放置一个DG的情况下,在这四种算法中,有三种算法建议在母线6上安装DG。为了显示建议的方法在寻找安装在母线6的DG的最佳发电量方面的性能,计算了网络损耗与安装在母线6的DG的发电量,如图5所示。如图5所示,如果安装在母线6上的DG产生2.706兆伏安,则损失达到最小值(0.09922兆瓦)。如表 1 所示,建议的方法找到了这个功率值,即安装在母线 6 上的 DG 应该产生的功率,以使损耗最小。

                     表 1 第一种场景的仿真结果(33节点测试配电系统)

         

   

                    图5 发电量的网络损耗(DG安装在 6节点)

3.1.2 情景二:非统一功率因数的DG运行模式。

在这种情况下,假设DG的功率因数不一定等于1,仿真结果见表2。从表2中可以看出,建议的方法达到了最低的网络损耗。

在放置一个 DG 的情况下,建议的算法建议安装在母线 30。安装的 DG 的功率为 1844.85 kVA,滞后功率因数为 0.767。图 6 显示了损耗与 DG 位置及其功率因数的关系。如图所示,解析法和遗传算法相结合,通过在母线 30 上安装一台 DG(图 7)以 0.767 的滞后功率因数,达到了最小的网络损耗。为了解析解决该问题,总线的电压不等式约束(即 Vmin < V bus < V max)不能包含在优化问题中。因此,在优化程序完成后,可以而且应该检查母线电压和线电流,以保证母线电压的不等式约束。表3列出了安装DG机组后33个总线系统的最低和最高电压.

                              表 2 场景二(33节点测试配电系统)的仿真结果

                     

                          表3 安装DG后的33个节点测试配电系统的最低和最高电压

                  

                       

                              图 6 系统损耗与 DG 位置及其功率因数的关系

                   

                             图7 在母线30安装一个DG,网络损失的最小值


3.2 69 节点测试配电系统仿真

本节对69 母线测试配电系统进行仿真。以下两种场景分别考虑了两种不同的 DG 运行模式。

3.2.1 场景一:DG 运行的单位功率因数模式:

这种情况下,假设 DG 工作在单位功率因数模式,只能产生有功功率。 DG 分配的结果列于表 4。如表中所列,与其他方法相比,所提出的方法导致较低的网络损耗。

                      表 4 第一种场景(69节点测试配电系统)的仿真结果

                         

3.2.2 场景二:DG 运行的非统一功率因数模式:

此时 DG 可以产生有功和无功功率,其功率因数不一定等于 1。69 年 DG 优化配置的结果母线测试配电系统见表 5。表 6 列出了 DG 机组安装后 69 母线系统的最小和最大电压。 

                        表 5 场景二(69节点测试配电系统)的仿真结果

               

          表 6 DG 安装后 69 母线测试配电系统的最小和最大电压

    


 4 结论

本文提出了一种解析法和遗传算法相结合的方法,用于配电网多台分散发电机组的配置,使系统网损最小。该方法利用遗传算法来寻找分布式电源的最优安装位置,并使用一种新的解析公式来确定分布式电源容量。将该方法与IA、LSF和ELF方法在降低损耗方面进行了比较。结果表明,与其他方法相比,该方法达到了最低的损耗。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/48051.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Paragon NTFS2023最新版Mac读写NTFS磁盘工具

Paragon NTFS for Mac是Mac平台上一款非常优秀的读写工具&#xff0c;可以在Mac OS X中完全读写、修改、访问NTFS硬盘、U盘等外接设备的文件。这款软件最大的亮点简书可以让我们读写 NTFS 分区&#xff0c;因为在Mac OS X 系统上&#xff0c;默认状态下我们只能读取NTFS 分区&a…

【Ubuntu18.04免密码登录SSH】

Ubuntu18.04免密码登录SSH 1 查看Ubuntu18.04系统中是否存在SSH服务2 配置SSH2.1 先删除一下ssh的目录&#xff0c;重新配置2.2 生存公钥和私钥2.3 将公钥上传到需要登录的服务器2.4 测试登录 1 查看Ubuntu18.04系统中是否存在SSH服务 sudo ps -e |grep ssh没有的话&#xff0…

网络安全(黑客)自学基础到高阶路线

01 什么是网络安全 网络安全可以基于攻击和防御视角来分类&#xff0c;我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术&#xff0c;而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 无论网络、Web、移动、桌面、云等哪个领域&#xff0c;都有攻与防两面…

[JavaWeb]MySQL的安装与介绍

MySQL的安装与介绍 一.数据库相关概念1.1 数据库1.2 常见的关系型数据库管理系统 二.MySQL数据库1.MySQL的安装2.配置环境变量3.新建MySQL配置文件4.初始化MySQL5.注册MySQL的服务6.修改默认账户与密码7.连接MySQL服务8.MySQL的卸载 三.MySQL的数据模型1.关系型数据库 一.数据库…

Gitlab 备份与恢复

备份 1、备份数据&#xff08;手动备份&#xff09; gitlab-rake gitlab:backup:create2、备份数据&#xff08;定时任务备份&#xff09; [rootlocalhost ]# crontab -l 00 1 * * * /opt/gitlab/bin/gitlab-rake gitlab:backup:create 说明&#xff1a;每天凌晨1点备份数据…

C++之lambda表达式/function/using/typedef用法总结(一百六十六)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

软件设计师学习第一章

计算机组成与体系结构&#xff08;6分&#xff09; 内容概述 数据的表示 进制转换 R 进制转十进制使用按权展开法&#xff0c;其具体操作方式为&#xff1a;将 R 进制数的每一位数值用 Rk 形示&#xff0c;即幂的底数是 R &#xff0c;指数为 k &#xff0c; k 与该位和小数点…

惠普HP Color Laser 150a开机红色感叹号闪烁不打印故障解决方法

故障描述&#xff1a; 惠普HP Color Laser 150a开机红色感叹号闪烁&#xff0c;不能打印&#xff0c;电脑提示C3-6140。 检测分析&#xff1a; 在解决C3-6140错误代码之前&#xff0c;我们需要先检查打印机是否连接正常。如果打印机连接不正常&#xff0c;也可能会出现这个错误…

2、HAproxy调度算法

HAProxy的调度算法可以大致分为以下几大类&#xff1a; 静态算法&#xff1a;这类算法的调度策略在配置时就已经确定&#xff0c;并且不会随着负载的变化而改变。常见的静态算法有&#xff1a; Round Robin(轮询) Least Connections(最少连接数) Static-Weight(静态权重) Sourc…

总结 Android 开发中截取字符串的方法

string str”hello word”;int i5; 1 取字符串的前i个字符 strstr.Substring(0,i); // or strstr.Remove(i,str.Length-i);substring(start,end)&#xff1a;substring是截取2个位置之间及start-end之间的字符串2 去掉字符串的前i个字符&#xff1a; strstr.Remove(0,i); // or…

LabVIEW开发谐振器陀螺仪仿真系统

LabVIEW开发谐振器陀螺仪仿真系统 陀螺仪是INS系统中最重要的传感器。它们的性能&#xff08;如精度和偏置稳定性&#xff09;决定了INS系统的水平。陀螺仪按原理分为三类&#xff1a;角动量守恒、萨格纳克效应和科里奥利效应。旋转坐标系中的移动物体受到的力与旋转坐标系的角…

flutter:角标

角标应该非常常见了&#xff0c;以小说app为例&#xff0c;通常会在小说封面的右上角上显示当前未读的章数。 badges 简介 Flutter的badges库是一个用于创建徽章组件的开源库。它提供了简单易用的API&#xff0c;使开发者可以轻松地在Flutter应用程序中添加徽章效果。 官方文…

chatGPT 学习分享:内含PPT分享下载

InstructGPT论文地址&#xff1a; Training language models to follow instructions with human feedbackchatGPT地址&#xff1a;openAI个人整理的PPT&#xff08;可编辑&#xff09;&#xff0c;下载地址&#xff1a;chatGPT学习分享PPT

windows环境下,安装elasticsearch

jdk ElasticSearch是基于lucence开发的&#xff0c;也就是运行需要java jdk支持。 我下载了 elasticsearch-8.9.0-windows-x86_64.zip&#xff0c;带了OpenJDK。 ElasticSearch下载 https://www.elastic.co/downloads/elasticsearch 安装ElasticSearch 下载安装包后解压 修…

AI Chat 设计模式:9. 命令模式

本文是该系列的第九篇&#xff0c;采用问答式的方式展开&#xff0c;问题由我提出&#xff0c;答案由 Chat AI 作出&#xff0c;灰色背景的文字则主要是我的一些思考和补充。 问题列表 Q.1 介绍下命令模式A.1Q.2 详细说说命令模式适用于啥场景呢A.2Q.3 举一个命令模式的例子&a…

pandas处理什么样的数据?

Pandas 是一个开源的第三方 Python 库&#xff0c;从 Numpy 和 Matplotlib 的基础上构建而来&#xff0c;享有数据分析“三剑客之一”的盛名&#xff08;NumPy、Matplotlib、Pandas&#xff09;。Pandas 已经成为 Python 数据分析的必备高级工具&#xff0c;它的目标是成为强大…

前端工作中常用 CSS 知识点整理

1.1文字溢出省略号 文字单行溢出: overflow: hidden; // 溢出隐藏 text-overflow: ellipsis; // 溢出用省略号显示 white-space: nowrap; // 规定段落中的文本不进行换行 多行文字溢出: overflow: hidden; // 溢出隐藏 text-overflow: …

几百本常用计算机开发语言电子书链接

GitHub - XiangLinPro/IT_book: 本项目收藏这些年来看过或者听过的一些不错的常用的上千本书籍&#xff0c;没准你想找的书就在这里呢&#xff0c;包含了互联网行业大多数书籍和面试经验题目等等。有人工智能系列&#xff08;常用深度学习框架TensorFlow、pytorch、keras。NLP、…

【已解决】React Antd Form.List 表单校验无飘红提示的问题

背景 我想对 Form.List 构建的表单进行校验&#xff0c;比如下拉框中的内容应当至少有一个 XX&#xff0c;表单的长度不能少于多少等等对 List 内容进行校验&#xff0c;并给出飘红提示 问题 比如我有这样一段代码来实现对 list 具体内容的校验&#xff0c;但是写完后发现没有…

MySQL-多表查询-案例1

案例 根据需求完成多表查询的SQL语句的编写将资料汇中准备好的数据的SQL脚本导入到数据库中准备数据中各表的关系如下 具体代码 -- 分类表 create table category(id int unsigned primary key auto_increment comment 主键ID,name varchar(20) not null unique comment 分类名…