基于OpenCV的图像处理案例之图像矫正(Python)

Index 目录索引

  • 写在前面
  • 解决思路
  • 参考

写在前面

本文通过一个案例介绍如何使用OpenCV将倾斜的扫描文档图像进行水平矫正。

解决思路

因为扫描图像中的大部分文字倾斜后,同一行文字也在同一条直线,所以可以通过拟合直线来计算文本倾斜角度,接着对这些倾斜角度进行排序,选择其中值作为最终的旋转角度,通过旋转来实现倾斜图像的水平矫正1。本文在参考文档的基础上,进行了中值筛选,从而更好地对倾斜图像进行矫正。

废话不多说,直接上代码:

import numpy as np
import os
import cv2
import math
from scipy import misc, ndimage


def getMedianAngle(lines):
    angles = []
    for line in lines:
        x1, y1, x2, y2 = line[0]
        # 计算直线的斜率
        if x1 != x2:  # 避免除以零错误
            slope = (y2 - y1) / (x2 - x1)
            # 计算斜率对应的角度
            angle = np.degrees(math.atan(slope))
            angles.append(angle)
    # 计算角度的中位数
    median_angle = np.median(angles)
    return median_angle


def rotate(image, angle, center=None, scale=1.0):
    (w, h) = image.shape[0:2]
    if center is None:
        center = (w // 2, h // 2)
    wrapMat = cv2.getRotationMatrix2D(center, angle, scale)
    return cv2.warpAffine(image, wrapMat, (h, w))


# 使用霍夫变换
def getCorrect2():
    # 读取图片,灰度化
    src = cv2.imread('./text_correct/640.png')
    showAndWaitKey("src", src)
    gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
    showAndWaitKey("gray", gray)
    # 腐蚀、膨胀
    kernel = np.ones((5, 5), np.uint8)
    erode_Img = cv2.erode(gray, kernel)
    eroDil = cv2.dilate(erode_Img, kernel)
    showAndWaitKey("eroDil", eroDil)
    # 边缘检测
    canny = cv2.Canny(eroDil, 50, 150)
    showAndWaitKey("canny", canny)
    # 霍夫变换得到线条
    lines = cv2.HoughLinesP(canny, 0.8, np.pi / 180, 90, minLineLength=100, maxLineGap=10)

	# 求得拟合图像倾斜角度的中位数
    median_angle = getMedianAngle(lines)
    print("Median Angle:", median_angle)

    drawing = np.zeros(src.shape[:], dtype=np.uint8)
    # 画出线条
    for line in lines:
        x1, y1, x2, y2 = line[0]
        cv2.line(drawing, (x1, y1), (x2, y2), (0, 255, 0), 1, lineType=cv2.LINE_AA)

    showAndWaitKey("houghP", drawing)
    """
    旋转角度大于0,则逆时针旋转,否则顺时针旋转
    """
    rotateImg = rotate(src, median_angle)
    cv2.imshow("rotateImg", rotateImg)
    cv2.waitKey()
    cv2.destroyAllWindows()
    cv2.imwrite('./text_correct/result.jpg', rotateImg)


def showAndWaitKey(winName, img):
    cv2.imshow(winName, img)
    cv2.waitKey()


if __name__ == "__main__":
    getCorrect2()

原图和结果图分别如下:

原图
原图
矫正后的图像
结果图


如果我的这篇文章帮助到了你,那我也会感到很高兴,一个人能走多远,在于与谁同行


参考


  1. 实战 | OpenCV实现扫描文本矫正应用与实现详解(附源码) ↩︎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/480009.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

《剑指 Offer》专项突破版 - 面试题 89 和 90 : 房屋偷盗和环形房屋偷盗(C++ 实现)

目录 面试题 89 : 房屋偷盗 面试题 90 : 环形房屋偷盗 面试题 89 : 房屋偷盗 题目: 输入一个数组表示某条街道上的一排房屋内财产的数目。如果这条街道上相邻的两幢房屋被盗就会自动触发报警系统。请计算小偷在这条街道上最多能偷取到多少财产。例如&#xff0c…

Kafka 3.x(上)

具体课程请看课程简介_哔哩哔哩_bilibili 概念 分布式流处理平台,它以高吞吐量和可扩展性而闻名。相同类型的消息存在于Topic主题中,主题类似于数据库中的表,不过主题存储的数据大多是半结构化的。主题可以包含多个分区(分布式的…

STM32之HAL开发——手动移植HAL库

HAL库移植步骤 创建目录 配置启动文件 在\Drivers\CMSIS\Device\ST\stm32f1xx\Source\Templates\ARM目录下,根据你的芯片型号选择对应的启动文件,不同容量大小的芯片,对应的启动文件也不一样。 注意:在HAL库中,不同容…

Git多分支管理实践

想要实现本地文件对远程文件的管理,必须懂得Git的相关操作。 工作中不免会遇到一个仓库多个分支的管理。 git多分支管理属于git的进阶版操作,下面我们来看看。 1. 拉取一个git仓库 git仓库名假设为:test_demo,默认是主仓库&…

企业如何利用数字工厂管理系统打造自动化产线

随着信息技术的飞速发展,数字化转型已成为企业提升生产效率、降低成本、优化管理的重要手段。数字工厂管理系统作为数字化转型的核心组成部分,其在打造自动化产线方面的作用日益凸显。本文将探讨企业如何利用数字工厂管理系统打造自动化产线,…

华为配置WLAN 802.1X认证实验

配置WLAN 802.1X认证示例 组网图形 图1 配置802.1X认证组网图 业务需求组网需求数据规划配置思路配置注意事项操作步骤 业务需求 用户接入WLAN网络,使用802.1X客户端进行认证,输入正确的用户名和密码后可以无线上网。且在覆盖区域内移动发生漫游时&…

【前端寻宝之路】学习和总结HTML表格的实现和合并

🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法|MySQL| ​💫个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-IWDj0gWiFt6IMq3x {font-family:"trebuchet ms",verdana,arial,sans-serif;f…

软件杯 深度学习 机器视觉 人脸识别系统 - opencv python

文章目录 0 前言1 机器学习-人脸识别过程人脸检测人脸对其人脸特征向量化人脸识别 2 深度学习-人脸识别过程人脸检测人脸识别Metric Larning 3 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习 机器视觉 人脸识别系统 该项目…

在Linux/Debian/Ubuntu上通过 Azure Data Studio 管理 SQL Server 2019

Microsoft 提供 Azure Data Studio,这是一种可在 Linux、macOS 和 Windows 上运行的跨平台数据库工具。 它提供与 SSMS 类似的功能,包括查询、脚本编写和可视化数据。 要在 Ubuntu 上安装 Azure Data Studio,可以按照以下步骤操作&#xff1…

基于SpringBoot和HeatMap的全球地震热力图可视化实践

目录 前言 一、关于热力图 1、HeatMap简介 2、属性和方法介绍 二、全球地震热力图反演 1、地震信息查询开发 2、前端地图开发 三、地震带反演成果 1、三大地震带反演 2、地震区域分析 总结 前言 众所周知,全球的地震带主要可以分为三处地震带——环太平洋地…

superset 二开增加 flink 数据源连接通过flink sql 查询数据

前言 superset 目前还不支持 flink 的数据源连接,目前我们公司在探索使用数据湖那一套东西: 使用 flink 作为计算引擎使用 paimon oss对象存储对接 flink 作为底层存储使用 superset 通过 flink gateway 查询 paimon 数据形成报表 增加flink数据源 …

Gavin Wood 精彩演讲|安全灵活 JAM 链,打造去中心化多核计算机

Polkadot 年度开发者大会 sub0 Asia 近期在泰国曼谷正式落幕。面对区块链行业的激烈竞争,Polkadot 创始人 Gavin Wood 在演讲中说明将如何利用 Polkadot 2.0 与 JAM 链带来新的技术创新,推动生态持续发展。 Polkadot 将推一个名为 JAM 链的新网络。JAM …

用傅里叶变换和反变换消除噪音信号干扰的软件实例

一、序言 场景一:噪音信号是数据采集处理的天敌,但无时无刻它都存在,于是,信号传输时进行屏蔽防护、模数转换时给予充分的采保时间、电路实现上低通带通处理,为了减小电解电容的感抗作用有时还附加上瓷片电容滤波&…

python的ITS 信息平台的设计与实现flask-django-nodejs-php

第二,陈列说明该系统实现所采用的架构、系统搭建采用的服务器、系统开发环境和使用的工具,以及系统后台采用的数据库。 最后,对系统进行全面测试,主要包括功能测试、查询性能测试、安全性能测试。 分析系统存在的不足以及将来改进…

深度学习pytorch——感知机(Perceptron)(持续更新)

什么是感知机? 感知机是由美国学者FrankRosenblatt在1957年提出来的。感知机是作为神经网络(深度学习)的起源的算法。因此,学习感知机的构造也就是学习通向神经网络和深度学习的一种重要思想。 感知机接收多个输入信号&#xff0c…

在服务器(Ubuntu20.04)安装用户级别的cuda11.8(以及仿照前面教程安装cuda11.3后安装cudnn和pytorch1.9.0)

1、cuda11.8的下载 首先在cuda官网下载我们需要的cuda版本,这里我下载的是cuda11.8(我的最高支持cuda12.0) 这里我直接使用wget命令下载不了,于是我直接在浏览器输入后面的链接下载到本地,之后再上传至服务器的&am…

如何使用人工智能和ChatGPT来优化营销转化率

人工智能 (AI) 和营销的交集正在彻底改变企业与客户互动的方式,最终改变营销转化率。人工智能能够分析大量数据、理解模式和自动执行任务,它不仅是一项创新技术,而且是营销领域的根本性转变。这种转变允许更加个性化、…

Loader和Plugin的区别?编写Loader,Plugin的思路。

一、区别 前面两节我们有提到Loader与Plugin对应的概念,先来回顾下 loader 是文件加载器,能够加载资源文件,并对这些文件进行一些处理,诸如编译、压缩等,最终一起打包到指定的文件中plugin 赋予了 webpack 各种灵活的…

Jupyter服务器端为R语言安装readr包

1.登录debian服务器 方式1.Windows10中可利用putty登录linux服务器 方式2.自从搭建了Jupyter服务器后,还可以从juypyter的终端来登录linux服务器 2.进入R语言命令行 3.安装readr包 >install.packages(‘readr’) …

四川宏博蓬达法律咨询有限公司:法律服务安全的新标杆

在这个法治社会,法律服务行业扮演着越来越重要的角色。四川宏博蓬达法律咨询有限公司,作为行业内的佼佼者,始终坚持以客户为中心,为客户提供专业、高效、安全的法律服务。 一、公司背景与实力展示 四川宏博蓬达法律咨询有限公司自…