文章目录
- 332. 重新安排行程
- 题目描述
- 思路
- 如何理解死循环
- 该记录映射关系
- dfs(回溯法)
- 代码
332. 重新安排行程
题目描述
给你一份航线列表 tickets ,其中 tickets[i] = [fromi, toi] 表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。
所有这些机票都属于一个从 JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 开始。如果存在多种有效的行程,请你按字典排序返回最小的行程组合。
例如,行程 [“JFK”, “LGA”] 与 [“JFK”, “LGB”] 相比就更小,排序更靠前。
假定所有机票至少存在一种合理的行程。且所有的机票 必须都用一次 且 只能用一次。
示例 1:
输入:tickets = [[“MUC”,“LHR”],[“JFK”,“MUC”],[“SFO”,“SJC”],[“LHR”,“SFO”]]
输出:[“JFK”,“MUC”,“LHR”,“SFO”,“SJC”]
示例 2:
输入:tickets = [[“JFK”,“SFO”],[“JFK”,“ATL”],[“SFO”,“ATL”],[“ATL”,“JFK”],[“ATL”,“SFO”]]
输出:[“JFK”,“ATL”,“JFK”,“SFO”,“ATL”,“SFO”]
解释:另一种有效的行程是 [“JFK”,“SFO”,“ATL”,“JFK”,“ATL”,“SFO”] ,但是它字典排序更大更靠后。
提示:
- 1 <= tickets.length <= 300
- tickets[i].length == 2
- fromi.length == 3
- toi.length == 3
- fromi 和 toi 由大写英文字母组成
- fromi != toi
思路
这道题目还是很难的,之前我们用回溯法解决了如下问题:组合问题 (opens new window),分割问题 (opens new window),子集问题 (opens new window),排列问题 (opens new window)。
直觉上来看 这道题和回溯法没有什么关系,更像是图论中的深度优先搜索。
实际上确实是深搜,但这是深搜中使用了回溯的例子,在查找路径的时候,如果不回溯,怎么能查到目标路径呢。
所以我倾向于说本题应该使用回溯法,那么我也用回溯法的思路来讲解本题,其实深搜一般都使用了回溯法的思路,在图论系列中我会再详细讲解深搜。
这里就是先给大家拓展一下,原来回溯法还可以这么玩!
这道题目有几个难点:
- 一个行程中,如果航班处理不好容易变成一个圈,成为死循环
- 有多种解法,字母序靠前排在前面,让很多同学望而退步,如何该记录映射关系呢 ?
- 使用回溯法(也可以说深搜) 的话,那么终止条件是什么呢?
- 搜索的过程中,如何遍历一个机场所对应的所有机场。
针对以上问题我来逐一解答!
如何理解死循环
对于死循环,我来举一个有重复机场的例子:
为什么要举这个例子呢,就是告诉大家,出发机场和到达机场也会重复的,如果在解题的过程中没有对集合元素处理好,就会死循环。
该记录映射关系
有多种解法,字母序靠前排在前面,让很多同学望而退步,如何该记录映射关系呢 ?
一个机场映射多个机场,机场之间要靠字母序排列,一个机场映射多个机场,可以使用std::unordered_map
,如果让多个机场之间再有顺序的话,就是用std::map
或者std::multimap
或者 std::multiset
。
如果对map 和 set 的实现机制不太了解,也不清楚为什么 map、multimap就是有序的同学,可以看这篇文章关于哈希表,你该了解这些!
这样存放映射关系可以定义为 unordered_map<string, multiset<string>> targets
或者 unordered_map<string, map<string, int>> targets
。
含义如下:
unordered_map<string, multiset> targets:unordered_map<出发机场, 到达机场的集合> targets
unordered_map<string, map<string, int>> targets:unordered_map<出发机场, map<到达机场, 航班次数>> targets
这两个结构,我选择了后者,因为如果使用unordered_map<string, multiset<string>> targets
遍历multiset
的时候,不能删除元素,一旦删除元素,迭代器就失效了。
再说一下为什么一定要增删元素呢,正如开篇我给出的图中所示,出发机场和到达机场是会重复的,搜索的过程没及时删除目的机场就会死循环。
所以搜索的过程中就是要不断的删multiset
里的元素,那么推荐使用unordered_map<string, map<string, int>> targets
。
在遍历 unordered_map<出发机场, map<到达机场, 航班次数>> targets
的过程中,可以使用"航班次数"这个字段的数字做相应的增减,来标记到达机场是否使用过了。
如果“航班次数”大于零,说明目的地还可以飞,如果“航班次数”等于零说明目的地不能飞了,而不用对集合做删除元素或者增加元素的操作。
相当于说我不删,我就做一个标记!
dfs(回溯法)
这道题目我使用回溯法,那么下面按照我总结的回溯模板来:
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
本题以输入:[[“JFK”, “KUL”], [“JFK”, “NRT”], [“NRT”, “JFK”]为例,抽象为树形结构如下:
开始回溯三部曲讲解:
- 递归函数参数
在讲解映射关系的时候,已经讲过了,使用unordered_map<string, map<string, int>> targets;
来记录航班的映射关系,我定义为全局变量。
当然把参数放进函数里传进去也是可以的,我是尽量控制函数里参数的长度。
参数里还需要ticketNum
,表示有多少个航班(终止条件会用上)。
代码如下:
// unordered_map<出发机场, map<到达机场, 航班次数>> targets
unordered_map<string, map<string, int>> targets;
bool backtracking(int ticketNum, vector<string>& result) {
注意函数返回值我用的是bool!
我们之前讲解回溯算法的时候,一般函数返回值都是void,这次为什么是bool呢?
因为我们只需要找到一个行程,就是在树形结构中唯一的一条通向叶子节点的路线,如图:
所以找到了这个叶子节点了直接返回
当然本题的targets和result都需要初始化,代码如下:
for (const vector<string>& vec : tickets) {
targets[vec[0]][vec[1]]++; // 记录映射关系
}
result.push_back("JFK"); // 起始机场
- 递归终止条件
拿题目中的示例为例,输入: [[“MUC”, “LHR”], [“JFK”, “MUC”], [“SFO”, “SJC”], [“LHR”, “SFO”]] ,这是有4个航班,那么只要找出一种行程,行程里的机场个数是5就可以了。
所以终止条件是:我们回溯遍历的过程中,遇到的机场个数,如果达到了(航班数量+1),那么我们就找到了一个行程,把所有航班串在一起了。
代码如下:
if (result.size() == ticketNum + 1) {
return true;
}
- 单层搜索的逻辑
回溯的过程中,如何遍历一个机场所对应的所有机场呢?
这里刚刚说过,在选择映射函数的时候,不能选择unordered_map<string, multiset<string>> targets
, 因为一旦有元素增删multiset的迭代器就会失效,当然可能有牛逼的容器删除元素迭代器不会失效,这里就不在讨论了。
可以说本题既要找到一个对数据进行排序的容器,而且还要容易增删元素,迭代器还不能失效。
所以我选择了unordered_map<string, map<string, int>> targets
来做机场之间的映射。
遍历过程如下:
for (pair<const string, int>& target : targets[result[result.size() - 1]]) {
if (target.second > 0 ) { // 记录到达机场是否飞过了
result.push_back(target.first);
target.second--;
if (backtracking(ticketNum, result)) return true;
result.pop_back();
target.second++;
}
}
可以看出 通过unordered_map<string, map<string, int>> targets
里的int字段来判断 这个集合里的机场是否使用过,这样避免了直接去删元素。
代码
下面是针对提供的C++代码的详细注释,解释了代码的功能以及每个重要部分的作用,旨在帮助理解如何重新安排航班行程的问题:
class Solution {
public:
// 主函数,用来调用回溯并返回最终的行程列表
vector<string> findItinerary(vector<vector<string>>& tickets) {
// 遍历所有的票并记录每一对出发地和目的地之间的票数
for(vector<string> i : tickets)
tar[i[0]][i[1]]++;
// 行程总是从JFK开始,所以先添加JFK到结果中
res.push_back("JFK");
// 调用回溯函数,尝试构建合理的行程
back_stracking(tickets.size(),res);
// 返回构建好的行程
return res;
}
private:
// 用于存放最终结果行程的列表
vector<string> res;
// 使用一个映射来记录每一对出发地和目的地间的票数
// 由于map默认按key排序,因此内部的map会根据字典序自动排序目的地
unordered_map<string,map<string,int>> tar;
// 回溯函数,用来尝试构建行程
bool back_stracking(int num, vector<string>& res) {
// 如果行程的长度等于所有票的数量+1(因为最终的行程会比票的数量多一个出发地),则找到了一个有效的行程
if(res.size() == num + 1)
return true;
// 遍历当前出发地到不同目的地的所有票
for(pair<const string,int>& tics : tar[res[res.size()-1]]) {
// 如果当前有剩余的票,则尝试这个目的地
if(tics.second > 0) {
// 使用一张票,并将目的地添加到行程中
tics.second--;
res.push_back(tics.first);
// 继续回溯,如果返回true,说明找到了有效行程,直接返回true
if(back_stracking(num,res)) return true;
// 如果没有找到有效行程,回溯,即撤销刚才的选择
res.pop_back();
tics.second++;
}
}
// 如果所有票都尝试过仍未找到有效行程,则返回false
return false;
}
};
这段代码的核心思想是使用深度优先搜索(DFS)结合回溯来寻找所有可能的行程,并利用map
的自动排序特性来保证行程按字典序排列。每尝试一种行程,都会从相应的出发地-目的地对中减去一张票,并递归搜索。如果最终构成的行程长度正确,则说明找到了一个符合条件的行程。如果某条路径无法构成有效行程,则会撤销这一选择(即回溯)并尝试其他可能的目的地。这个过程会一直持续,直到找到一个有效的行程或者所有的行程都尝试完毕。
代码中
for (pair<const string, int>& target : targets[result[result.size() - 1]])
一定要加上引用即 & target
,因为后面有对 target.second
做减减操作,如果没有引用,单纯复制,这个结果就没记录下来,那最后的结果就不对了。
加上引用之后,就必须在 string
前面加上 const
,因为map
中的key
是不可修改了,这就是语法规定了。