迷宫(蓝桥杯)——DFS和BFS

迷宫

题目描述

下图给出了一个迷宫的平面图,其中标记为 1 的为障碍,标记为 0 的为可以通行的地方。

010000
000100
001001
110000

迷宫的入口为左上角,出口为右下角,在迷宫中,只能从一个位置走到这 个它的上、下、左、右四个方向之一。

对于上面的迷宫,从入口开始,可以按 DRRURRDDDR 的顺序通过迷宫, 一共 10 步。其中
D、U、L、R 分别表示向下、向上、向左、向右走。 对于下面这个更复杂的迷宫(30 行 50 列),
请找出一种通过迷宫的方式,其使用的步数最少,在步数最少的前提下,请找出字典序最小的一个作为答案。

请注意在字典序中 D<L<R<U。

01010101001011001001010110010110100100001000101010
00001000100000101010010000100000001001100110100101
01111011010010001000001101001011100011000000010000
01000000001010100011010000101000001010101011001011
00011111000000101000010010100010100000101100000000
11001000110101000010101100011010011010101011110111
00011011010101001001001010000001000101001110000000
10100000101000100110101010111110011000010000111010
00111000001010100001100010000001000101001100001001
11000110100001110010001001010101010101010001101000
00010000100100000101001010101110100010101010000101
11100100101001001000010000010101010100100100010100
00000010000000101011001111010001100000101010100011
10101010011100001000011000010110011110110100001000
10101010100001101010100101000010100000111011101001
10000000101100010000101100101101001011100000000100
10101001000000010100100001000100000100011110101001
00101001010101101001010100011010101101110000110101
11001010000100001100000010100101000001000111000010
00001000110000110101101000000100101001001000011101
10100101000101000000001110110010110101101010100001
00101000010000110101010000100010001001000100010101
10100001000110010001000010101001010101011111010010
00000100101000000110010100101001000001000000000010
11010000001001110111001001000011101001011011101000
00000110100010001000100000001000011101000000110011
10101000101000100010001111100010101001010000001000
10000010100101001010110000000100101010001011101000
00111100001000010000000110111000000001000000001011
10000001100111010111010001000110111010101101111000

暴力DFS

这段代码是一个迷宫求解程序,使用深度优先搜索(DFS)算法来找到从迷宫的左上角(起点)到右下角(终点)的最短路径。下面是对代码的详细注释:

#include<bits/stdc++.h>
using namespace std;

// 定义列数和行数
const int col=30, row=50;

// 迷宫的二维数组,0表示可通行,1表示障碍
int mp[col+1][row+1] = {
    // 迷宫的具体布局,这里省略了具体的数字,只给出了格式
    // ...
};

// 用于记录路径的字符数组
char a[col*row];

// 用于保存最终路径的字符串
string s;

// 记录从起点到终点的最短步数
int best = INT_MAX;

// 判断函数,用来判断当前坐标是否在迷宫内部且为可通行区域
int judge(int x, int y) {
    if (x > 0 && x <= col && y > 0 && y <= row && v[x][y] == 0 && mp[x][y] == 0)
        return 1;
    return 0;
}

// 深度优先搜索函数,用于寻找路径
void dfs(int x, int y, int step) {
    // 如果当前步数已经超过已知的最短步数,则直接返回
    if (step > best)
        return;
    // 如果已经到达终点(迷宫的右下角),则记录路径
    if (x == col && y == row) {
        string temp;
        // 将路径中的每一步转换为字符串形式并拼接
        for (int i = 0; i < step; i++)
            temp += a[i];
        // 如果当前路径比已知的最短路径更短,则更新最短路径
        if (step < best) {
            best = step;
            s = temp;
        }
        // 如果当前路径与已知的最短路径同样短,但字典序更小,则更新最短路径
        else if (step == best && temp < s)
            s = temp;
        return;
    }
    // 定义四个可能的移动方向:上、下、左、右
    int dir_x[4] = {-1, 1, 0, 0};
    int dir_y[4] = {0, 0, -1, 1};
    char dir[4] = {'U', 'D', 'L', 'R'};
    // 遍历所有可能的移动方向
    for (int i = 0; i < 4; i++) {
        int x_1 = x + dir_x[i];
        int y_1 = y + dir_y[i];
        // 如果新的位置在迷宫内部且为可通行区域
        if (judge(x_1, y_1)) {
            // 记录当前方向到路径数组中
            a[step] = dir[i];
            // 标记当前位置为已访问
            v[x_1][y_1] = 1;
            // 递归调用dfs函数,继续搜索下一个位置
            dfs(x_1, y_1, step + 1);
            // 回溯,将当前位置标记为未访问
            v[x_1][y_1] = 0;
        }
    }
}

int main() {
    // 将起点标记为已访问
    v[1][1] = 1;
    // 调用dfs函数开始搜索
    dfs(1, 1, 0);
    // 输出最终找到的最短路径
    cout << s << endl;
    // 输出最短路径的步数
    cout << best << endl;
    return 0;
}

这段代码的主要逻辑是通过深度优先搜索来遍历迷宫的所有可能路径,同时记录并更新最短路径。在搜索过程中,使用了一个二维数组 v 来标记已经访问过的位置,以避免重复访问。当到达终点时,会检查当前路径的步数是否比已知的最短路径更短,或者在步数相同的情况下是否字典序更小。如果满足条件,就会更新最短路径。最后,程序输出找到的最短路径及其步数。

因为dfs是遍历到每一条路径,所以代码编译时间一定很长,但这是填空题,所以暴力也是一种办法
在这里插入图片描述
所以,我们需要优化


这个方法好像不行,我运行4个小时也没出答案,应该是递归太多栈溢出了


DFS+剪枝优化

根据上面代码以及截图来看,如果我们定义一个mins数组来存储从起点到该点的位置,如果 pos+1 大于 mins[tox][toy],那么当前路径不会是到达 (tox, toy) 的最短路径,因此没有必要继续在这个方向上搜索,可以剪枝,节省搜索时间。

因此,我们只需要在if判断中加入pos+1<=mins[tox][toy]条件即可

if(judge(tox,toy)&&pos+1<=mins[tox][toy])//判断下一步是否合法且如果pos+1大于起点到(tox,toy)的步骤,依然无意义 

代码详细注释如下:

// 引入必要的头文件
#include<iostream>
#include<cstring> // 用于 memset 函数
#include<string> // 用于 string 类型
using namespace std;

// 定义四个可能的移动方向:右(R)、左(L)、下(D)、上(U)
const int dirx[4] = {0, 0, 1, -1}; // x 坐标的变动
const int diry[4] = {1, -1, 0, 0}; // y 坐标的变动
const char dir[4] = {'R', 'L', 'D', 'U'}; // 方向的缩写

// 定义迷宫的行数和列数
const int row = 30, col = 50;

// 定义一个字符数组,用于记录最终的路径序列
char a[row * col + 5];

// 定义一个字符串,用于存储最终的路径序列
string ans;

// 定义迷宫数组,0 表示可通行,1 表示障碍
int maze[row + 1][col + 1] = {
    // 迷宫的具体布局,这里省略了具体的数字,只给出了格式
    // ...
};

// 判断函数,用于检查坐标 (x, y) 是否在迷宫内部且为可通行区域
int judge(int x, int y) {
    if (x > 0 && x <= row && y > 0 && y <= col && maze[x][y] == 0)
        return 1;
    return 0;
}

// 深度优先搜索函数,用于寻找通往出口的最短路径
void dfs(int x, int y, int pos) {
    // 如果当前步数已经超过已知的最短步数 best,则直接返回
    if (pos > best)
        return;
    // 如果已经到达终点(迷宫的右下角),则记录路径
    if (x == row && y == col) {
        // 根据路径记录构建字符串
        string temp;
        for (i = 0; i < pos; i++) {
            temp += a[i];
        }
        // 如果当前路径比已知的最短路径更短,则更新 best 和 ans
        if (pos < best) {
            ans = temp;
            best = pos;
        } else if (pos == best && temp < ans) {
            ans = temp;
        }
        return;
    }
    // 遍历四个可能的移动方向
    for (int i = 0; i < 4; i++) {
        int tox = x + dirx[i];
        int toy = y + diry[i];
        // 如果新的位置在迷宫内部且为可通行区域
        if (judge(tox, toy)) {
            // 标记当前位置为已访问
            maze[tox][toy] = 1;
            // 更新到新位置的最短步数
            mins[tox][toy] = pos + 1;
            // 记录移动方向到路径数组中
            a[pos] = dir[i];
            // 递归调用 dfs 函数,继续搜索下一个位置
            dfs(tox, toy, pos + 1);
            // 回溯,将当前位置标记为未访问
            maze[tox][toy] = 0;
        }
    }
}

// 主函数
int main() {
    // 初始化 mins 数组,将所有值设置为一个非常大的数,表示无穷大
    memset(mins, 1, sizeof(mins));
    // 初始化 best 为一个非常大的数,用于记录从起点到终点的最小步数
    best = 1 << 28;
    // 将迷宫入口(1, 1)标记为已访问
    maze[1][1] = 1;
    // 调用 dfs 函数开始搜索
    dfs(1, 1, 0);
    // 输出最终找到的最短路径
    cout << ans << endl;
    // 输出最短路径的步数
    cout << best << endl;
    return 0;
}

这段代码的主要逻辑是通过深度优先搜索来遍历迷宫的所有可能路径,同时记录并更新最短路径。在搜索过程中,使用了一个二维数组 mins 来记录从起点到每个点的最短步数,以及一个字符数组 a 来记录路径中的每一步移动方向。当到达终点时,会检查当前路径的步数是否比已知的最短路径更短,或者在步数相同的情况下是否字典序更小。如果满足条件,就会更新最短路径。最后,程序输出找到的最短路径及其步数。

难点解释:pos+1<=mins[tox][toy]

在这段代码中,pos+1<=mins[tox][toy] 这一行的作用是检查当前扩展的路径是否可能成为到达新位置 (tox, toy) 的更短或等长但字典序更优的路径。

具体来说,这里的 pos 表示当前路径的步数,mins[tox][toy] 存储的是到达位置 (tox, toy) 的最短步数。如果 pos+1(即当前路径步数加一,因为我们要移动到新位置)小于或等于 mins[tox][toy],这意味着我们找到了一个到达该位置的路径,其步数不比已知的最短步数多,或者步数相同时路径的字典序更优(因为在这段代码中,路径是通过字符数组 a 记录的,所以可以直接比较字符串的字典序)。

如果 pos+1 大于 mins[tox][toy],那么当前路径不会是到达 (tox, toy) 的最短路径,因此没有必要继续在这个方向上搜索,可以剪枝,节省搜索时间。

这个条件检查是典型的在图搜索算法中用于优化和剪枝的技巧,它帮助算法避免在不可能改善当前最短路径的方向上浪费时间。通过这种方式,算法可以保证在找到出口时,记录的路径是最短的,并且在步数相同时字典序最小的路径。

踩过的坑:memset(mins, 1, sizeof(mins));

这里我没理解memset函数的作用,其实memset这个函数只能将整型数组初始化为0和-1,对于其他数字的初始化则不行,例如这里memset(mins, 1, sizeof(mins));则是将mins数组初始化为16843009,这是一个非常大的数

BFS

#include<bits/stdc++.h> // 包含所有标准库
using namespace std;
typedef pair<int,int> PII; // 定义一个类型别名,方便表示坐标对

const int col=30,row=50; // 定义迷宫的列数和行数

// 迷宫的布局,0表示可通行的路径,1表示障碍
int mp[col][row] = {
0,1,0,1,0,1,0,1,0,0,1,0,1,1,0,0,1,0,0,1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,0,0,0,1,0,0,0,1,0,1,0,1,0,
0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,1,0,0,1,1,0,1,0,0,1,0,1,
0,1,1,1,1,0,1,1,0,1,0,0,1,0,0,0,1,0,0,0,0,0,1,1,0,1,0,0,1,0,1,1,1,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,
0,1,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,1,0,1,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,1,
0,0,0,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,1,0,1,0,0,0,1,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,
1,1,0,0,1,0,0,0,1,1,0,1,0,1,0,0,0,0,1,0,1,0,1,1,0,0,0,1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,1,1,1,1,0,1,1,1,
0,0,0,1,1,0,1,1,0,1,0,1,0,1,0,0,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,1,1,1,0,0,0,0,0,0,0,
1,0,1,0,0,0,0,0,1,0,1,0,0,0,1,0,0,1,1,0,1,0,1,0,1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,1,0,0,0,0,1,1,1,0,1,0,
0,0,1,1,1,0,0,0,0,0,1,0,1,0,1,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,1,1,0,0,0,0,1,0,0,1,
1,1,0,0,0,1,1,0,1,0,0,0,0,1,1,1,0,0,1,0,0,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,1,1,0,1,0,0,0,
0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,1,0,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0,0,0,0,1,0,1,
1,1,1,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,0,0,1,0,0,0,1,0,1,0,0,
0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,1,1,
1,0,1,0,1,0,1,0,0,1,1,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,1,1,0,0,1,1,1,1,0,1,1,0,1,0,0,0,0,1,0,0,0,
1,0,1,0,1,0,1,0,1,0,0,0,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0,0,0,0,1,0,1,0,0,0,0,0,1,1,1,0,1,1,1,0,1,0,0,1,
1,0,0,0,0,0,0,0,1,0,1,1,0,0,0,1,0,0,0,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0,0,
1,0,1,0,1,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1,1,0,1,0,1,0,0,1,
0,0,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,0,0,1,1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,1,0,1,0,1,
1,1,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,1,0,1,0,0,1,0,1,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,0,1,0,
0,0,0,0,1,0,0,0,1,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,
1,0,1,0,0,1,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,1,1,0,1,1,0,0,1,0,1,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0,0,1,
0,0,1,0,1,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0,1,0,1,
1,0,1,0,0,0,0,1,0,0,0,1,1,0,0,1,0,0,0,1,0,0,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,1,1,1,0,1,0,0,1,0,
0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,0,0,1,0,1,0,0,1,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,
1,1,0,1,0,0,0,0,0,0,1,0,0,1,1,1,0,1,1,1,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,0,1,1,1,0,1,0,0,0,
0,0,0,0,0,1,1,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,1,0,1,0,0,0,0,0,0,1,1,0,0,1,1,
1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,
1,0,0,0,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,1,0,0,0,0,0,0,0,1,0,0,1,0,1,0,1,0,0,0,1,0,1,1,1,0,1,0,0,0,
0,0,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,1,
1,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,1,1,1,0,1,0,0,0,1,0,0,0,1,1,0,1,1,1,0,1,0,1,0,1,1,0,1,1,1,1,0,0,0
};

int d[col+1][row+1]; // 定义一个二维数组,用于记录从起点到每个点的最短距离

queue<PII> p; // 创建一个队列,用于存放待探索的坐标

// 定义一个结构体,用于记录路径信息
struct node {
    int x; // 父节点的x坐标
    int y; // 父节点的y坐标
    char s; // 父节点的方向
};

node fa[col][row]; // 创建一个二维数组,用于记录每个点的父节点信息

// dx和dy数组用于表示四个方向的相对坐标变化
int dx[5] = {1, 0, 0, -1};
int dy[5] = {0, -1, 1, 0};

// dir数组用于表示四个方向的字符,按照字典序排序
char dir[5] = {'D', 'L', 'R', 'U'};

// 判断函数,用于检查坐标是否在迷宫内,且为可通行的路径,且未被探索过
int judge(int x, int y) {
    if (x >= 0 && x < col && y >= 0 && y < row && mp[x][y] == 0 && d[x][y] == -1)
        return 1;
    return 0;
}

// 深度优先搜索函数,用于探索迷宫
void dfs(int x, int y) {
    if (x == col - 1 && y == row - 1) // 如果到达终点,则停止搜索
        return;
    else
        dfs(fa[x][y].x, fa[x][y].y); // 递归探索父节点
	//因为father(29,49)存储了它上一个位置在哪,那么就可以顺藤摸瓜的找出再上一个位置
	//如此搜索下去,直到搜到(0,0)位置而终止,返回上一层打印出所记录的direction方位,
	//逐层返回,就把从(0,0)走到(29,49)所途径的所有点时的direction都打印出来了
    cout << fa[x][y].s; // 输出路径
}

int main() {
    memset(d, -1, sizeof(d)); // 初始化距离数组,将所有值设为-1,表示未探索
    p.push({0, 0}); // 将起点加入队列
    d[0][0] = 0; // 起点到起点的距离设为0

    while (p.size() != 0) { // 当队列不为空时,循环探索
        PII t = p.front(); // 取出队列中的第一个元素
        p.pop();

        for (int i = 0; i < 4; i++) { // 遍历四个方向
            int tx = t.first + dx[i]; // 计算目标坐标
            int ty = t.second + dy[i];

            if (judge(tx, ty)) { // 如果目标坐标可通行
                d[tx][ty] = d[t.first][t.second] + 1; // 更新距离
                p.push({tx, ty}); // 将目标坐标加入队列
                fa[tx][ty].x = t.first; // 记录父节点坐标
                fa[tx][ty].y = t.second;
                fa[tx][ty].s = dir[i]; // 记录方向
                //father(tox,toy)的x、y、s表明了
				//走到(tox,toy)这个点,是从其(x,y)点往s方向而来的 
				//换句话说,就是存储了它的上一个点的位置,以及从何方位而来 
            }
        }
    }

    dfs(col - 1, row - 1); // 从终点开始回溯,输出路径
    return 0;
}

这段代码的主要功能是找到从迷宫的左上角(起点)到右下角(终点)的最短路径,并按照字典序输出路径。代码使用了深度优先搜索算法,通过一个队列来实现层级遍历,同时记录每个点的父节点信息,以便最后回溯输出路径。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/478149.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】Centos7安装redis

目录 下载安装包安装1.解压2.环境安装3.查看redis的安装路径4.将之前redis的配置文件&#xff0c;复制到安装路径下&#xff08;新建一个文件夹并复制&#xff09;5.redis 设置默认后台启动&#xff0c;修改配置文件6.启动redis服务默认启动通过配置文件启动查看进程 7.开放637…

52、Qt/窗口、常用类、ui相关学习20240321

一、使用Qt 自由发挥登录窗口的应用场景&#xff0c;实现一个登录窗口界面。 要求&#xff1a; 1. 需要使用Ui界面文件进行界面设计 2. ui界面上的组件相关设置&#xff0c;通过代码实现 3. 需要添加适当的动图。 代码&#xff1a; #include "widget.h" #incl…

【重温设计模式】访问者模式及其Java示例

访问者模式的基本概念 访问者模式&#xff0c;一种行为型设计模式&#xff0c;其基本定义是&#xff1a;允许一个或者多个操作应用到一组对象上&#xff0c;解耦操作和对象的具体类&#xff0c;使得操作的添加可以独立于对象的类结构变化。在面向对象编程中&#xff0c;访问者…

软件推荐 篇三十七:开源免费无广告的在线音乐免费播放 | MusicFree纯净无广告体验-小众冷门推荐

引言 自从QQ音乐没了杰伦、某云开始收费&#xff0c;除了各种广告弹窗导致电脑卡的要死&#xff0c;打工人就靠这点音乐背景熬夜了&#xff0c;木有办法&#xff0c;得有个开源免费的听歌软件吧&#xff0c;一搜github&#xff0c;软件一大堆&#xff0c;作为一个打工仔&#…

八大排序算法之希尔排序

希尔排序是插入排序的进阶版本&#xff0c;他多次调用插入排序&#xff0c;在插入排序上进行了改造&#xff0c;使其处理无序的数据时候更快 核心思想&#xff1a;1.分组 2.直接插入排序&#xff1a;越有序越快 算法思想&#xff1a; 间隔式分组&#xff0c;利用直接插入排序…

java数据结构与算法刷题-----LeetCode215. 数组中的第K个最大元素

java数据结构与算法刷题目录&#xff08;剑指Offer、LeetCode、ACM&#xff09;-----主目录-----持续更新(进不去说明我没写完)&#xff1a;https://blog.csdn.net/grd_java/article/details/123063846 文章目录 解题思路&#xff1a;时间复杂度O( n n n)&#xff0c;空间复杂度…

【深度学习】训练Stable Diffusion环境

仓库&#xff1a; https://github.com/bmaltais/kohya_ss.git 基础镜像&#xff1a; from kevinchina/deeplearning:sdxllighting_trt_nginx_002api docker run --net host --gpus device0 -e APIWORKS1 -it t1:t1 bash构建环境&#xff1a; sudo -i git clone https://git…

算法第三十一天-直方图的水量

直方图的水量 题目要求 解题思路 使用面向列的计算比面向行的计算更加容易。我们只需要考虑当前的位置的左右最高模板的高度。 方法一、暴力解法 每个位置能接到多少雨水&#xff0c;很容易想到[木桶效应]&#xff0c;即是由两边最短的木板限制的。那么直观思路就是&#x…

C语言 动态内存管理

目录 前言 一、动态内存分配 二、malloc和free函数 2.1 malloc函数 2.2 free函数 三、calloc和realloc函数 3.1 calloc函数 3.2 realloc函数 四、常见的动态内存的错误 1.对NULL指针的解引用操作 2.对动态开辟空间的越界访问 3.对非动态开辟内存使用free释放 4.使用…

深度学习-2.8模型拟合概念和欠拟合模型、过拟合调整策略

模型拟合概念和欠拟合模型、过拟合调整策略 文章目录 模型拟合概念和欠拟合模型、过拟合调整策略一、模型拟合度概念介绍1.测试集的“不可知悖论”2.模型拟合度概念与实验 二、过拟合、欠拟合问题解决方案1. 欠拟合解决方案2.过拟合解决方案 三、神经网络结果选择策略1. 参数和…

拼多多2023年实现营收2476亿 助力品质好物与消费升级双向奔赴

拼多多集团近日发布了截至去年12月31日的财务业绩报告&#xff0c;拼多多在2023年第四季度实现了889亿元的营收&#xff0c;同比增长了惊人的123%。而在全年范围内&#xff0c;拼多多的营收更是高达2476亿元&#xff0c;同比增长了90%。 去年是拼多多全面拥抱高质量发展的元年…

晶体管图示仪 能测 IGBT. Mosfet. Diode. BJT......

STD2000晶体管图示仪系统能测试很多电子元器件的静态直流参数&#xff08;如击穿电压V(BR)CES/V(BR)DSs、漏电流ICEs/lGEs/IGSs/lDSs、阈值电压/VGE(th)、开启电压/VCE(on)、跨导/Gfe/Gfs、压降/Vf、导通内阻Rds(on)&#xff09;。 测试种类覆盖 7 大类别26分类&#xff0c;包…

解锁企业数字化运营管理:论专业数据中台解决方案的重要性-亿发

没有数据中台&#xff0c;数字化经营就像是建立在沙滩上的城堡&#xff0c;缺乏坚实的基础支撑。数据中台对于企业数字化经营能力的建设至关重要&#xff0c;它扮演着连接、整合和管理数据的关键角色&#xff0c;出现将扩展企业可利用数据的范围。传统的业务分析主要使用财务数…

Python使用PaddleOCR进行图片转文字

PaddleOCR是百度飞桨开发的OCR库 安装 安装PaddleOCR&#xff0c;只需要两个命令&#xff1a; pip install paddlepaddle2.4.2 pip install paddleocr 基本使用 PaddleOCR的使用也很简单&#xff1a; from paddleocr import PaddleOCR# use_angle_cls&#xff1a;是否使用…

高通 8255 基本通信(QUP)Android侧控制方法说明

一&#xff1a;整体说明 高通8255芯片中&#xff0c;SPI IIC UART核心统一由QUP V3 进行控制 QUP V3为可编程模块&#xff0c;可以将不同通道配置为SPI IIC UART通路&#xff0c;此部分配置在QNX侧 QUP 资源可以直接被QNX使用&#xff0c;Android侧可以通过两种方法使用QUP资源…

Android Audio相关

AudioManager AudioService的Bp端&#xff0c;调用AudioManager>AudioService&#xff08;代码实现&#xff09; AudioService 继承自IAudioService.Stub&#xff0c;为Bn端 AudioSystem AudioService功能实现都依赖于AudioSystem&#xff0c;AudioService通过AudioSys…

SCXI-1193 控制器 多路复用器开关模块 NI 仪器仪表 SCXI-1001

规范 SCXI -1193 500 MHz四路8x1 50多路复用器 本文件列出了SCXI-1193多路复用器模块的规格。所有规格均为 如有变更&#xff0c;恕不另行通知。请访问ni.com/manuals了解最新规格。 配置四路8x1多路复用器 双通道16x1多路复用器 单路32x1多路复用器 四路4x1端接多路复用器 双路…

Java Swing游戏开发学习15

内容来自RyiSnow视频讲解 这一节讲的是Title Screen&#xff0c;直译&#xff1a;标题屏幕。视频开始没有字幕了&#xff0c;比较考验听力[/doge]&#x1f436;&#xff0c;常听到不认识的单词&#xff0c;一边猜&#xff0c;一边琢磨意思。作者说有许多人讨论如何实现non-gam…

地理数据表达方式学习——KML与SHP

一、KML-Keyhole Markup Language Keyhole Markup Language (KML)是一种XML符号&#xff0c;用于浏览器中二维地图和三维地球的地理注释和地理可视化&#xff08;地理数据包括点、线、面、多边形、多面体以及模型等&#xff09;。KML是伴随着Google Earth的使用而开发的&#x…

ROS机器人入门第一课:ROS快速体验——python实现HelloWorld

文章目录 ROS机器人入门第一课&#xff1a;ROS快速体验——python实现HelloWorld一、HelloWorld实现简介&#xff08;一&#xff09;创建工作空间并初始化&#xff08;二&#xff09;进入 src 创建 ros 包并添加依赖 二、HelloWorld(Python版)&#xff08;二&#xff09;进入 r…