YOLOv9改进策略:block优化 | AIFI (尺度内特征交互)助力YOLO | YOLO终结者?RT-DETR一探究竟

    💡💡💡本文改进内容: YOLOv9如何魔改卷积进一步提升检测精度?AIFI (尺度内特征交互)助力YOLO ,提升尺度内和尺度间特征交互能力,同时降低多个尺度的特征之间进行注意力运算,计算消耗较大等问题

yolov9-c-AIFI summary: 973 layers, 52577574 parameters, 52577542 gradients, 239.3 GFLOPs

 改进结构图如下:

YOLOv9魔术师专栏

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、24年最新顶会改进思路、原创自研paper级创新等

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

✨✨✨ 新开专栏暂定免费限时开放,后续每月调价一次✨✨✨

🚀🚀🚀 本项目持续更新 | 更新完结保底≥50+ ,冲刺100+🚀🚀🚀

🍉🍉🍉 联系WX: AI_CV_0624 欢迎交流!🍉🍉🍉

YOLOv9魔改:注意力机制、检测头、blcok魔改、自研原创等

 YOLOv9魔术师

💡💡💡全网独家首发创新(原创),适合paper !!!

💡💡💡 2024年计算机视觉顶会创新点适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!

💡💡💡重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!

 1.YOLOv9原理介绍

论文: 2402.13616.pdf (arxiv.org)

代码:GitHub - WongKinYiu/yolov9: Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information摘要: 如今的深度学习方法重点关注如何设计最合适的目标函数,从而使得模型的预测结果能够最接近真实情况。同时,必须设计一个适当的架构,可以帮助获取足够的信息进行预测。然而,现有方法忽略了一个事实,即当输入数据经过逐层特征提取和空间变换时,大量信息将会丢失。因此,YOLOv9 深入研究了数据通过深度网络传输时数据丢失的重要问题,即信息瓶颈和可逆函数。作者提出了可编程梯度信息(programmable gradient information,PGI)的概念,来应对深度网络实现多个目标所需要的各种变化。PGI 可以为目标任务计算目标函数提供完整的输入信息,从而获得可靠的梯度信息来更新网络权值。此外,研究者基于梯度路径规划设计了一种新的轻量级网络架构,即通用高效层聚合网络(Generalized Efficient Layer Aggregation Network,GELAN)。该架构证实了 PGI 可以在轻量级模型上取得优异的结果。研究者在基于 MS COCO 数据集的目标检测任务上验证所提出的 GELAN 和 PGI。结果表明,与其他 SOTA 方法相比,GELAN 仅使用传统卷积算子即可实现更好的参数利用率。对于 PGI 而言,它的适用性很强,可用于从轻型到大型的各种模型。我们可以用它来获取完整的信息,从而使从头开始训练的模型能够比使用大型数据集预训练的 SOTA 模型获得更好的结果。对比结果如图1所示。

 YOLOv9框架图

1.1 YOLOv9框架介绍

YOLOv9各个模型介绍

2.RT-DETR介绍

论文: https://arxiv.org/pdf/2304.08069.pdf

        RT-DETR (Real-Time DEtection TRansformer) ,一种基于 DETR 架构的实时端到端检测器,其在速度和精度上取得了 SOTA 性能

为什么会出现:

        YOLO 检测器有个较大的待改进点是需要 NMS 后处理,其通常难以优化且不够鲁棒,因此检测器的速度存在延迟。为避免该问题,我们将目光移向了不需要 NMS 后处理的 DETR,一种基于 Transformer 的端到端目标检测器。然而,相比于 YOLO 系列检测器,DETR 系列检测器的速度要慢的多,这使得"无需 NMS "并未在速度上体现出优势。上述问题促使我们针对实时的端到端检测器进行探索,旨在基于 DETR 的优秀架构设计一个全新的实时检测器,从根源上解决 NMS 对实时检测器带来的速度延迟问题。

        RT-DETR是第一个实时端到端目标检测器。具体而言,我们设计了一个高效的混合编码器,通过解耦尺度内交互和跨尺度融合来高效处理多尺度特征,并提出了IoU感知的查询选择机制,以优化解码器查询的初始化。此外,RT-DETR支持通过使用不同的解码器层来灵活调整推理速度,而不需要重新训练,这有助于实时目标检测器的实际应用。RT-DETR-L在COCO val2017上实现了53.0%的AP,在T4 GPU上实现了114FPS,RT-DETR-X实现了54.8%的AP和74FPS,在速度和精度方面都优于相同规模的所有YOLO检测器。RT-DETR-R50实现了53.1%的AP和108FPS,RT-DETR-R101实现了54.3%的AP和74FPS,在精度上超过了全部使用相同骨干网络的DETR检测器。

 RT-DETR模型结构

(1)Backbone: 采用了经典的ResNet和百度自研的HGNet-v2两种,backbone是可以Scaled,HGNetv2的L和X两个版本,也分别对标经典的ResNet50和ResNet101,不同于DINO等DETR类检测器使用最后4个stage输出,RT-DETR为了提速只需要最后3个,这样也符合YOLO的风格;

(2) Neck:现有的多尺度 Transformer 编码器在多个尺度的特征之间进行注意力运算,同时进行尺度内和尺度间特征交互,计算消耗较大。为了减少计算消耗,一个简单的办法是直接削减编码器层数。但是飞桨团队认为这并不能从根本上解决问题并且势必会对精度造成较大影响,更本质的方法应该是要解耦这种尺度内和尺度间的同时交互,缩短输入编码器的序列长度。为此,飞桨团队设计了一系列编码器变体来验证解耦尺度内和尺度间特征交互的可行性并最终演化为 HybridEncoder ,其包括两部分:Attention-based Intra-scale Feature Interaction (AIFI) 和 CNN-based Cross-scale Feature-fusion Module (CCFM) 。

(2) Decoder & Head:DETR 架构有两个关键组件: Query Selection 和 Decoder 。Query Selection 的作用是从 Encoder 输出的特征序列中选择固定数量的特征作为 object queries ,其经过 Decoder 后由预测头映射为置信度和边界框。现有的 DETR 变体都是利用这些特征的分类分数直接选择 top-K 特征。然而,由于分类分数和 IoU 分数的分布存在不一致,分类得分高的预测框并不一定是和 GT 最接近的框,这导致高分类分数低 IoU 的框会被选中,而低分类分数高 IoU 的框会被丢弃,这将会损害检测器的性能。为解决这一问题,飞桨团队提出了 IoU-aware Query Selection ,通过在训练期间约束检测器对高 IoU 的特征产生高分类分数,对低 IoU 的特征产生低分类分数。从而使得模型根据分类分数选择的 top-K 特征对应的预测框同时具有高分类分数和高 IoU 分数。对于 Decoder ,飞桨团队并没有对其结构进行调整,目的是为了方便使用高精度的 DETR 的大检测模型对轻量级 DETR 检测器进行蒸馏。

 

RT-DETR作者团队认为只需将Encoder作用在S5 特征上,既可以大幅度地减小计算量、提高计算速度,又不会损伤到模型的性能。为了验证这一点,作者团队设计了若干对照组,如下图所示。 

实验结果:

3.AIFI加入到YOLOv9

3.1新建py文件,路径为models/block/AIFI.py


import math

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import constant_, xavier_uniform_

class TransformerEncoderLayer(nn.Module):
    """Defines a single layer of the transformer encoder."""

    def __init__(self, c1, cm=2048, num_heads=8, dropout=0.0, act=nn.GELU(), normalize_before=False):
        """Initialize the TransformerEncoderLayer with specified parameters."""
        super().__init__()

        self.ma = nn.MultiheadAttention(c1, num_heads, dropout=dropout, batch_first=True)
        # Implementation of Feedforward model
        self.fc1 = nn.Linear(c1, cm)
        self.fc2 = nn.Linear(cm, c1)

        self.norm1 = nn.LayerNorm(c1)
        self.norm2 = nn.LayerNorm(c1)
        self.dropout = nn.Dropout(dropout)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)

        self.act = act
        self.normalize_before = normalize_before

    @staticmethod
    def with_pos_embed(tensor, pos=None):
        """Add position embeddings to the tensor if provided."""
        return tensor if pos is None else tensor + pos

    def forward_post(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
        """Performs forward pass with post-normalization."""
        q = k = self.with_pos_embed(src, pos)
        src2 = self.ma(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2 = self.fc2(self.dropout(self.act(self.fc1(src))))
        src = src + self.dropout2(src2)
        return self.norm2(src)

    def forward_pre(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
        """Performs forward pass with pre-normalization."""
        src2 = self.norm1(src)
        q = k = self.with_pos_embed(src2, pos)
        src2 = self.ma(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        src2 = self.norm2(src)
        src2 = self.fc2(self.dropout(self.act(self.fc1(src2))))
        return src + self.dropout2(src2)

    def forward(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
        """Forward propagates the input through the encoder module."""
        if self.normalize_before:
            return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
        return self.forward_post(src, src_mask, src_key_padding_mask, pos)


class AIFI(TransformerEncoderLayer):
    """Defines the AIFI transformer layer."""

    def __init__(self, c1, cm=2048, num_heads=8, dropout=0, act=nn.GELU(), normalize_before=False):
        """Initialize the AIFI instance with specified parameters."""
        super().__init__(c1, cm, num_heads, dropout, act, normalize_before)

    def forward(self, x):
        """Forward pass for the AIFI transformer layer."""
        c, h, w = x.shape[1:]
        pos_embed = self.build_2d_sincos_position_embedding(w, h, c)
        # Flatten [B, C, H, W] to [B, HxW, C]
        x = super().forward(x.flatten(2).permute(0, 2, 1), pos=pos_embed.to(device=x.device, dtype=x.dtype))
        return x.permute(0, 2, 1).view([-1, c, h, w]).contiguous()

    @staticmethod
    def build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.0):
        """Builds 2D sine-cosine position embedding."""
        assert embed_dim % 4 == 0, "Embed dimension must be divisible by 4 for 2D sin-cos position embedding"
        grid_w = torch.arange(w, dtype=torch.float32)
        grid_h = torch.arange(h, dtype=torch.float32)
        grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="ij")
        pos_dim = embed_dim // 4
        omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
        omega = 1.0 / (temperature**omega)

        out_w = grid_w.flatten()[..., None] @ omega[None]
        out_h = grid_h.flatten()[..., None] @ omega[None]

        return torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], 1)[None]

3.2修改yolo.py

1)首先进行引用

from models.block.AIFI import AIFI

2)修改def parse_model(d, ch):  # model_dict, input_channels(3)

在源码基础上加入AIFI

        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is AIFI:
            args = [ch[f], *args]

3.3 yolov9-c-AIFI.yaml

实验中,后续更新

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/477743.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C语言例:n是否为素数(质数)

质数是指只能被1和自身整除的正整数。要判断一个数n是否为质数,可以通过以下步骤进行: 首先,判断n是否小于2,如果小于2,则不是质数。然后,从2开始,逐个判断n是否能被2到sqrt(n)之间的数整除。如…

jdk api之SyncFailedException基础、应用、实战

博主18年的互联网软件开发经验,从一名程序员小白逐步成为了一名架构师,我想通过平台将经验分享给大家,因此博主每天会在各个大牛网站点赞量超高的博客等寻找该技术栈的资料结合自己的经验,晚上进行用心精简、整理、总结、定稿&…

实体框架EF(Entity Framework)简介

实体框架EF(Entity Framework)简介 文章目录 实体框架EF(Entity Framework)简介一、概述二、O/R Mapping是什么采用O/R Mapping带来哪些好处 三、Entity Framework架构3.1 下图展示了Entity Framework的整体架构3.2 Entity Framew…

【机器学习-08】参数调优宝典:网格搜索与贝叶斯搜索等攻略

超参数是估计器的参数中不能通过学习得到的参数。在scikit-learn中,他们作为参数传递给估计器不同类的构造函数。典型的例子有支持向量分类器的参数C,kernel和gamma,Lasso的参数alpha等。 ​ 在超参数集中搜索以获得最佳cross validation交叉…

Ant Design Vue和VUE3下的upload组件使用以及文件预览

Ant Design Vue和VUE3下的upload组件使用以及文件预览 文章目录 Ant Design Vue和VUE3下的upload组件使用以及文件预览一、多文件上传1.需求2.样例3.代码 二、单文件上传1. 需求2. 样例3.代码 二、多文件上传产生的时间超时问题三、文件系统名称更改1. 修改文件index.html2. 修…

现货大宗商品交易系统开发及平台需要哪些资质

现货大宗商品交易平台需要一系列资质和条件来确保其合法、合规运营,保障投资者的权益和市场的稳定。以下是现货大宗商品交易平台需要的主要资质和条件: 公司注册与法人资格:平台需要依法办理工商注册登记手续,并具有法人资格。这…

硬核分享|如何使用AI根据一段文字描述来生成图片

硬核分享|如何使用AI根据一段文字描述来生成图片_哔哩哔哩_bilibili 最近许多人询问关于AIGC生成图片工具的推荐问题,深感寻找一款好用的AIGC生成图片工具在当今信息爆炸时代的重要性。现在,为大家分享几款好用的AIGC生成图片工具,一起探索吧…

【C++】vector容器初步模拟

送给大家一句话: 努力一点,漂亮—点,阳光一点。早晚有一天,你会惊艳了时光,既无人能替,又光芒万丈。 vector容器初步模拟 1 认识vector开始了解底层实现 2 开始实现成员变量构造函数 析构函数尾插迭代器插入…

FX110网:FCA揭露Admirals的克隆实体!冒充正规平台行骗

近日,英国金融行为监管局(FCA)曝光了多个网址,揭露克隆实体fxsadmiral / admiral-fx / admiralsfx。这些克隆公司复制授权公司Admiral Markets UK Ltd的重要信息,试图让人们相信他们的公司是真实的。FCA本次披露的克隆…

记录西门子200:PUT和GET通讯测试

GET/PUT:S7-200SMART之间专有通讯协议。 准备两台Smart-PLC,这里使用的ST60和CR40。外加一个交换机。 CR40的地址设置是:192.168.2.1 用来读 ST60的地址设置是:192.168.2.2 用来写 打开软件,选择CPU-CR4配…

深入探索Java并发库(JUC)中的ReentrantReadWriteLock

码到三十五 : 个人主页 心中有诗画,指尖舞代码,目光览世界,步履越千山,人间尽值得 ! 在Java并发编程的世界中,锁是一种用于同步访问共享资源的机制。Java并发库(JUC)为我们提供了多…

简易指南:国内ip切换手机软件怎么弄

在网络访问受到地域限制的情况下,使用国内IP切换手机软件可以帮助用户轻松访问被屏蔽的内容,扩展网络体验。以下是虎观代理小二分享的使用国内IP切换手机软件的简易指南。并提供一些注意事项。 如何在手机上使用国内IP切换软件 步骤一:选择I…

PHP连接达梦数据库

PDO是一种在PHP中连接数据库的接口,可以通过PDO接口使用PHP连接达梦数据库。 1、安装PHP环境 检查当前环境是否安装PHP [rootlocalhost ~]# php -v 当前环境并未安装PHP,需要进行安装,选择安装PHP7.3版本。 2、安装 epel-release源和源管…

工程信号的去噪和(分类、回归和时序)预测

🚀【信号去噪及预测论文代码指导】🚀 还为小论文没有思路烦恼么?本人专注于最前沿的信号处理与预测技术——基于信号模态分解的去噪算法和深度学习的信号(回归、时序和分类)预测算法,致力于为您提供最精确、…

【Python爬虫】网络爬虫:信息获取与合规应用

这里写目录标题 前言网络爬虫的工作原理网络爬虫的应用领域网络爬虫的技术挑战网络爬虫的伦理问题结语福利 前言 网络爬虫,又称网络爬虫、网络蜘蛛、网络机器人等,是一种按照一定的规则自动地获取万维网信息的程序或者脚本。它可以根据一定的策略自动地浏…

常用的6个的ChatGPT网站,国内可用!

GPTGod 🌐 链接: GPTGod 🏷️ 标签: GPT-4 免费体验 支持API 支持绘图 付费选项 📝 简介:GPTGod 是一个功能全面的平台,提供GPT-4的强大功能,包括API接入和绘图支持。用户可以选择免…

【阿里魔搭】modelscope包下载安装

最终解决方案:使用源码安装modelscope 这里写目录标题 问题描述:pip安装包冲突安装步骤 问题描述:pip安装包冲突 一开始的是在3.11的虚拟环境下使用命令行pip install "modelscope[nlp]" -f https://modelscope.oss-cn-beijing.al…

DUSt3R:简化三维重建

3D 重建是从二维 (2D) 图像创建对象或场景的 3D 虚拟表示的任务,可用于模拟、可视化或本地化等多种目的。 它广泛应用于计算机视觉、机器人和虚拟现实(VR)等多个领域。 在基本设置中,3D 重建方法输入一对图像 I1 和 I2&#xff0c…

字体测试集:选取、应用与兼容性指南

1. 字体测试集 本人非专业字体工作者,字体测试集为个人经验总结整理,仅供参考 那时,天下人的口音、言语都是一样。 南去經三國,東來過五湖 南去经三国,东来过五湖 永东国酬爱郁灵鹰袋 0Oo1lI ga The quick brown fox j…

6个免费的ChatGPT网站

AI 大模型的出现给时代带来了深远的影响: 改变了产业格局:AI 大模型的发展推动了人工智能技术在各行业的广泛应用,改变了传统产业的运作方式,促进了新兴产业的崛起,如智能驾驶、医疗健康、金融科技等。提升了科学研究…