Redis 大 Key 对持久化有什么影响?

资料来源 : 小林coding

小林官方网站 : 小林coding (xiaolincoding.com)

Redis 的持久化方式有两种:AOF 日志和 RDB 快照。

所以接下来,针对这两种持久化方式具体分析分析

大 Key 对 AOF 日志的影响

先说说 AOF 日志三种写回磁盘的策略

Redis 提供了 3 种 AOF 日志写回硬盘的策略,分别是:

  • Always,这个单词的意思是「总是」,所以它的意思是每次写操作命令执行完后,同步将 AOF 日志数据写回硬盘;
  • Everysec,这个单词的意思是「每秒」,所以它的意思是每次写操作命令执行完后,先将命令写入到 AOF 文件的内核缓冲区,然后每隔一秒将缓冲区里的内容写回到硬盘;
  • No,意味着不由 Redis 控制写回硬盘的时机,转交给操作系统控制写回的时机,也就是每次写操作命令执行完后,先将命令写入到 AOF 文件的内核缓冲区,再由操作系统决定何时将缓冲区内容写回硬盘。

这三种策略只是在控制 fsync() 函数的调用时机。

当应用程序向文件写入数据时,内核通常先将数据复制到内核缓冲区中,然后排入队列,然后由内核决定何时写入硬盘。

如果想要应用程序向文件写入数据后,能立马将数据同步到硬盘,就可以调用 fsync() 函数,这样内核就会将内核缓冲区的数据直接写入到硬盘,等到硬盘写操作完成后,该函数才会返回。

  • Always 策略就是每次写入 AOF 文件数据后,就执行 fsync() 函数;
  • Everysec 策略就会创建一个异步任务来执行 fsync() 函数;
  • No 策略就是永不执行 fsync() 函数;

分别说说这三种策略,在持久化大 Key 的时候,会影响什么?

在使用 Always 策略的时候,主线程在执行完命令后,会把数据写入到 AOF 日志文件,然后会调用 fsync() 函数,将内核缓冲区的数据直接写入到硬盘,等到硬盘写操作完成后,该函数才会返回。

当使用 Always 策略的时候,如果写入是一个大 Key,主线程在执行 fsync() 函数的时候,阻塞的时间会比较久,因为当写入的数据量很大的时候,数据同步到硬盘这个过程是很耗时的

当使用 Everysec 策略的时候,由于是异步执行 fsync() 函数,所以大 Key 持久化的过程(数据同步磁盘)不会影响主线程。

当使用 No 策略的时候,由于永不执行 fsync() 函数,所以大 Key 持久化的过程不会影响主线程。

大 Key 对 AOF 重写和 RDB 的影响

当 AOF 日志写入了很多的大 Key,AOF 日志文件的大小会很大,那么很快就会触发 AOF 重写机制

AOF 重写机制和 RDB 快照(bgsave 命令)的过程,都会分别通过 fork() 函数创建一个子进程来处理任务。

在创建子进程的过程中,操作系统会把父进程的「页表」复制一份给子进程,这个页表记录着虚拟地址和物理地址映射关系,而不会复制物理内存,也就是说,两者的虚拟空间不同,但其对应的物理空间是同一个。

这样一来,子进程就共享了父进程的物理内存数据了,这样能够节约物理内存资源,页表对应的页表项的属性会标记该物理内存的权限为只读

随着 Redis 存在越来越多的大 Key,那么 Redis 就会占用很多内存,对应的页表就会越大。

在通过 fork() 函数创建子进程的时候,虽然不会复制父进程的物理内存,但是内核会把父进程的页表复制一份给子进程,如果页表很大,那么这个复制过程是会很耗时的,那么在执行 fork 函数的时候就会发生阻塞现象

而且,fork 函数是由 Redis 主线程调用的,如果 fork 函数发生阻塞,那么意味着就会阻塞 Redis 主线程。由于 Redis 执行命令是在主线程处理的,所以当 Redis 主线程发生阻塞,就无法处理后续客户端发来的命令。

我们可以执行 info 命令获取到 latest_fork_usec 指标,表示 Redis 最近一次 fork 操作耗时。

# 最近一次 fork 操作耗时
latest_fork_usec:315

如果 fork 耗时很大,比如超过1秒,则需要做出优化调整:

  • 单个实例的内存占用控制在 10 GB 以下,这样 fork 函数就能很快返回。
  • 如果 Redis 只是当作纯缓存使用,不关心 Redis 数据安全性问题,可以考虑关闭 AOF 和 AOF 重写,这样就不会调用 fork 函数了。
  • 在主从架构中,要适当调大 repl-backlog-size,避免因为 repl_backlog_buffer 不够大,导致主节点频繁地使用全量同步的方式,全量同步的时候,是会创建 RDB 文件的,也就是会调用 fork 函数。

那什么时候会发生物理内存的复制呢?

当父进程或者子进程在向共享内存发起写操作时,CPU 就会触发写保护中断,这个「写保护中断」是由于违反权限导致的,然后操作系统会在「写保护中断处理函数」里进行物理内存的复制,并重新设置其内存映射关系,将父子进程的内存读写权限设置为可读写,最后才会对内存进行写操作,这个过程被称为「写时复制(Copy On Write)」。

写时复制顾名思义,在发生写操作的时候,操作系统才会去复制物理内存,这样是为了防止 fork 创建子进程时,由于物理内存数据的复制时间过长而导致父进程长时间阻塞的问题。

如果创建完子进程后,父进程对共享内存中的大 Key 进行了修改,那么内核就会发生写时复制,会把物理内存复制一份,由于大 Key 占用的物理内存是比较大的,那么在复制物理内存这一过程中,也是比较耗时的,于是父进程(主线程)就会发生阻塞

所以,有两个阶段会导致阻塞父进程:

  • 创建子进程的途中,由于要复制父进程的页表等数据结构,阻塞的时间跟页表的大小有关,页表越大,阻塞的时间也越长;
  • 创建完子进程后,如果子进程或者父进程修改了共享数据,就会发生写时复制,这期间会拷贝物理内存,如果内存越大,自然阻塞的时间也越长;

这里额外提一下, 如果 Linux 开启了内存大页,会影响 Redis 的性能的

Linux 内核从 2.6.38 开始支持内存大页机制,该机制支持 2MB 大小的内存页分配,而常规的内存页分配是按 4KB 的粒度来执行的。

如果采用了内存大页,那么即使客户端请求只修改 100B 的数据,在发生写时复制后,Redis 也需要拷贝 2MB 的大页。相反,如果是常规内存页机制,只用拷贝 4KB。

两者相比,你可以看到,每次写命令引起的复制内存页单位放大了 512 倍,会拖慢写操作的执行时间,最终导致 Redis 性能变慢

那该怎么办呢?很简单,关闭内存大页(默认是关闭的)。

禁用方法如下:

echo never >  /sys/kernel/mm/transparent_hugepage/enabled

总结

当 AOF 写回策略配置了 Always 策略,如果写入是一个大 Key,主线程在执行 fsync() 函数的时候,阻塞的时间会比较久,因为当写入的数据量很大的时候,数据同步到硬盘这个过程是很耗时的。

AOF 重写机制和 RDB 快照(bgsave 命令)的过程,都会分别通过 fork() 函数创建一个子进程来处理任务。会有两个阶段会导致阻塞父进程(主线程):

  • 创建子进程的途中,由于要复制父进程的页表等数据结构,阻塞的时间跟页表的大小有关,页表越大,阻塞的时间也越长;
  • 创建完子进程后,如果父进程修改了共享数据中的大 Key,就会发生写时复制,这期间会拷贝物理内存,由于大 Key 占用的物理内存会很大,那么在复制物理内存这一过程,就会比较耗时,所以有可能会阻塞父进程。

大 key 除了会影响持久化之外,还会有以下的影响。

  • 客户端超时阻塞。由于 Redis 执行命令是单线程处理,然后在操作大 key 时会比较耗时,那么就会阻塞 Redis,从客户端这一视角看,就是很久很久都没有响应。

  • 引发网络阻塞。每次获取大 key 产生的网络流量较大,如果一个 key 的大小是 1 MB,每秒访问量为 1000,那么每秒会产生 1000MB 的流量,这对于普通千兆网卡的服务器来说是灾难性的。

  • 阻塞工作线程。如果使用 del 删除大 key 时,会阻塞工作线程,这样就没办法处理后续的命令。

  • 内存分布不均。集群模型在 slot 分片均匀情况下,会出现数据和查询倾斜情况,部分有大 key 的 Redis 节点占用内存多,QPS 也会比较大。

如何避免大 Key 呢?

最好在设计阶段,就把大 key 拆分成一个一个小 key。或者,定时检查 Redis 是否存在大 key ,如果该大 key 是可以删除的,不要使用 DEL 命令删除,因为该命令删除过程会阻塞主线程,而是用 unlink 命令(Redis 4.0+)删除大 key,因为该命令的删除过程是异步的,不会阻塞主线程。

完!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/477673.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何让 string 型的字符串变成 int 型的整数

之前我们讲过了如何裁剪字符串和如何反转字符串&#xff0c;具体情况可以看看我前几期发的博客&#xff0c;今天我们就来讲讲怎么将 string 型的字符串变成 int 型的整数。 我们可以使用在 <bits/stdc.h> 中的 atoi 函数来处理这种形式转变&#xff0c;如下&#xff1a;…

如何使用Android平板公网访问本地Linux code-server

文章目录 1.ubuntu本地安装code-server2. 安装cpolar内网穿透3. 创建隧道映射本地端口4. 安卓平板测试访问5.固定域名公网地址6.结语 1.ubuntu本地安装code-server 准备一台虚拟机,Ubuntu或者centos都可以&#xff0c;这里以VMwhere ubuntu系统为例 下载code server服务,浏览器…

设计模式之单例模式解析

单例模式 1&#xff09;动机 对于软件系统的某些类&#xff0c;无须创建多个实例&#xff0c;如 Windows 系统的任务管理器&#xff0c;重复对象会浪费系统资源。 2&#xff09;概述 1.定义 确保某个类只有一个实例&#xff0c;而且自行实例化&#xff0c;并向整个系统提供…

vue中循环数据,添加展开、收起操作

1.在data中定义变量 expandedIndex&#xff0c;默认展开第一条 expandedIndex:0,2.标题栏展开、收起显示判断&#xff0c;并填加点击事件 toggleVisibility <h5 class"titleLine">{{item.checkPart}} <span click"toggleVisibility(index)">…

【GPT概念04】仅解码器(only decode)模型的解码策略

一、说明 在我之前的博客中&#xff0c;我们研究了关于生成式预训练转换器的整个概述&#xff0c;以及一篇关于生成式预训练转换器&#xff08;GPT&#xff09;的博客——预训练、微调和不同的用例应用。现在让我们看看所有仅解码器模型的解码策略是什么。 二、解码策略 在之前…

【LVGL-按钮按钮矩阵部件】

LVGL-按钮&按钮矩阵部件 ■ LVGL-按钮部件■ 按钮部件&#xff1a; 点击三个按钮一个回调函数修改label值。 ■ LVGL-按钮矩阵部件■ 示例一&#xff1a;按钮换行&#xff0c;和宽度设置。■ 示例二&#xff1a;设置按钮宽度为2倍■ 示例三&#xff1a;获取点击的按钮下标&…

【以图搜图】GPUNPU适配万物识别模型和Milvus向量数据库

目录 以图搜图介绍项目地址Milvuscv_resnest101_general_recognition 代码使用流程结果展示模型部署环境Milvus部署及使用docker安装docker-compose安装Milvus可视化工具Attu进入网页端 Data数据示例点个赞再走呗&#xff01;比心&#x1f49e;️ 以图搜图 • &#x1f916; Mo…

【java】10.面向对象

一、类和对象 1.1 类和对象的理解 客观存在的事物皆为对象 &#xff0c;所以我们也常常说万物皆对象。 * 类 * 类的理解 * 类是对现实生活中一类具有共同属性和行为的事物的抽象 * 类是对象的数据类型&#xff0c;类是具有相同属性和行为的一组对象的集合 * 简单理解&am…

C#、.NET版本、Visual Studio版本对应关系及Visual Studio老版本离线包下载地址

0、写这篇文章的目的 由于电脑的环境不同&#xff0c;对于一个老电脑找到一个适配的vscode环境十分不易。总结一下C#、.NET、Visual Studio版本的对应关系&#xff0c;及各个版本Visual Studio的下载地址供大家参考 1、C#、.NET版本、Visual Studio版本对应关系如下 2、Visua…

使用paddleocr

paddle快速开始 具体安装流程 安装shapely库报错怎么办&#xff1f; 选定下载paddleocr2.2时报错 原因是因为python版本不支持&#xff1a; 之后重新创建新的环境&#xff0c;安装python3.8再来一遍 【重新选取对应whl文件&#xff0c;确认文件名是否可用】 之后是可以了…

ARM Coresight 系列文章 11.1 -- CoreSight Cortex-M33 CTI 详细介绍】

请阅读【ARM Coresight SoC-400/SoC-600 专栏导读】 文章目录 CTI 的工作原理CTI 主要特点CTI的使用场景CTI 的工作原理 CTI 允许不同的调试和追踪组件之间基于特定事件进行交互。例如,当一个断点被命中时,CTI 可以用来触发内存的追踪捕捉或者外部仪器的行为,反之亦然。这种…

C#多态性

文章目录 C#多态性静态多态性函数重载函数重载 动态多态性运行结果 C#多态性 静态多态性 在编译时&#xff0c;函数和对象的连接机制被称为早期绑定&#xff0c;也被称为静态绑定。C# 提供了两种技术来实现静态多态性。分别为&#xff1a; 函数重载 运算符重载 运算符重载将…

iPhone语音备忘录误删?掌握这几个技巧轻松恢复【详】

语音备忘录是一款强大的应用程序&#xff0c;它允许用户使用语音输入功能来快速记录想法、提醒、待办事项等。无论是在行进间、工作中还是日常生活中&#xff0c;语音备忘录都是一个非常实用的工具&#xff0c;可以帮助您随时随地记录重要信息&#xff0c;而无需打字或者手动输…

什么是Vector Database?

此为看完视频What is a Vector Database?后的笔记。 作者首先对数据库做了分类&#xff0c;其中RTweb表示real time web app。 然后对用例做了分类&#xff0c;最后一个就是适合于AI的近似搜索。 好处&#xff0c;包括灵活性&#xff0c;可扩展性和性价比。 本视频最重要的…

数据清洗(一)Excel

一、引言 线上出现问题之后的数据清洗是少不了的&#xff0c;有的可以直接通过接口或者mq补偿&#xff0c;有的写sql更新db就可以&#xff0c;但是在匹配关系比较复杂的时候就需要建立临时表做关联匹配&#xff0c;数据量不大可以直接用excel进行匹配。 二、Excel清洗数据 作者…

Windows系统服务器宝塔面板打开提示Internal Server Error错误

1、cmd运行bt命令 2、尝试输入16修复程序 3、如果不行&#xff0c;输入17升级程序

你知道弧幕影院如何制作吗?其应用领域竟如此广泛!

“沉浸式”作为如今备受热议的内容展示形式&#xff0c;其有着多种可实现的途径&#xff0c;其中弧幕影院作为一项有着独特视觉效果、沉浸式观影体验的技术类型&#xff0c;便是大多数影院、主题公园等娱乐场景的必备设计展项&#xff0c;这种弧幕影院通常使用大型的半圆形屏幕…

PyQt:实现菜单栏的点击拖动效果

一、整体步骤 1.设计UI文件 2.调用显示 3.效果展示 二、设计UI文件 1.添加 Scroll Area控件&#xff0c;作为菜单栏的布置区域 2.设置 Scroll Area控件的属性 3.Scroll Area控件内放置 按钮控件 组成菜单栏 此处&#xff0c;放置了需要了6个按钮&#xff0c;并设置按钮的固…

YoloV8改进策略:BackBone改进|PKINet

摘要 PKINet是面向遥感旋转框的主干,网络包含了CAA、PKI等模块,给我们改进卷积结构的模型带来了很多启发。本文,使用PKINet替代YoloV8的主干网络,实现涨点。PKINet是我在作者的模型基础上,重新修改了底层的模块,方便大家轻松移植到YoloV8上。 论文:《Poly Kernel Ince…

科学认识并正确运用人工智能技术赋能国际传播

以下文章来源&#xff1a;学习时报 加强国际传播能力建设&#xff0c;全面提升国际传播效能&#xff0c;形成同我国综合国力和国际地位相匹配的话语权&#xff0c;已成为实现中国式现代化需要解决好的一个重大问题。文生视频模型Sora&#xff0c;是继ChatGPT之后又一推动传播智…