爱因斯坦可以教给在机器学习中利用对称性

爱因斯坦可以教给我们关于机器学习的知识
在机器学习中利用对称性

目录

  • 一、说明
  • 二、物理学中的对称性
  • 三、机器学习中的对称性
  • 四、卷积神经网络 (CNN) 中的对称性
  • 五、将对称性集成到机器学习中,用于平面图像及其他图像
  • 六、引用

一、说明

   在许多方面,物理学和机器学习都有一个共同的目标:制定观察到的现象的模型。为了实现这一目标,物理学家早就认识到对称性的重要性。在这篇文章中,我们将探讨如何利用物理学中的对称性思想作为机器学习的指导原则。

在这里插入图片描述

雪花的对称性。[照片由 达米安·麦考格 on Unsplash]
   R在过去的十年中,APID在机器学习方面取得了进展,特别是对于涉及复杂高维数据的问题,例如计算机视觉或自然语言处理中的问题。然而,与生物智能相比,对机器智能的一个普遍批评是它从示例中学习的效率低下。虽然年幼的孩子可能只从少数几个例子中学会识别新动物,但现代机器学习系统可能需要数百甚至数千个例子才能实现相同的壮举。

二、物理学中的对称性

   作为人类,我们根据强大的物理定律形成周围世界的模型,其中许多是我们潜意识学习的。物理学家探索如何将这些定律和模型形式化和发现。他们的目标是制定准确描述和预测观察到的现象的基础过程模型。

   物理系统可以在不同的抽象级别上建模。用于解释天文现象的模型通常利用与用于解释亚原子粒子的物理定律不同的物理定律。然而,有一个原则贯穿于物理定律的各个抽象层次:必须尊重自然界的已知对称性。

   关于物理定律的对称性概念与它在描述物体对称性时更熟悉的用法略有不同。如果一个对象在某种变换下保持不变(即不变),则认为它具有对称性。例如,球体在任何任意旋转下仍然是球体这一事实意味着它表现出旋转对称性。

   另一方面,如果控制系统行为的物理定律在经历转换之前和之后以相同的方式适用于系统,则该定律被认为是对称的。

   一个简单的例子是平移对称性,它由以同样方式适用于系统的定律所满足,而不管系统的位置如何。例如,掉在房子一个房间的球与掉在另一个房间的球的行为相同(忽略任何外部因素,如任何微风)。

   第二个例子是旋转对称性,它由定律满足,这些定律以同样的方式适用于系统,无论它面向哪个方向。第三个例子是时间平移对称性,它由不随时间变化的定律所满足。

   物理学家很早就意识到物理定律的时空对称性。然而,在20世纪初,对称性在物理学中的重要性发生了范式转变。

   爱因斯坦在1905年发表的关于狭义相对论的著名论文中没有从物理定律开始并推导出相应的对称性质,而是使用对称原理作为推导新物理定律的起点。
在这里插入图片描述

   十年后,德国数学家艾米·诺特(Emmy Noether)在女性基本上被排除在学术职位之外的时代,对抽象代数和理论物理学都做出了开创性的贡献,进一步提升了对称性在物理学中的作用。她证明了对于物理定律的每一个连续对称性,都存在相应的守恒定律。例如,动量守恒定律可以从物理定律的平移对称性中推导出来。同样,角动量守恒来自旋转对称性和能量守恒来自时间平移对称性。

   阿尔伯特·爱因斯坦(左)和艾美·诺特(右)。[图片来源于维基共享资源:爱因斯坦;诺特]
物理学的基本定律,如能量守恒和动量守恒,实际上源于宇宙的对称性。

   利用对称性作为指导原则来发现相应的定律和模型来描述观察到的现象,不仅在物理学中有很大的用处,而且可以在机器学习中得到利用。

三、机器学习中的对称性

   机器学习从业者非常清楚对模型施加约束以控制偏差-方差权衡的重要性。在寻找解释变量和目标变量之间关系的模型时,在机器学习中,我们首先指定一类模型,我们假设这些模型包含一个充分描述性的模型。在本类中,我们寻找最能描述观察到的现象的模型,即最大化拟合经验度量的模型。

   必须指定一个足够宽泛的类,以便它包含一个准确描述关系的模型,同时也要受到足够的限制,以便它不会被过度拟合数据的模型所超越。这通常很难实现,因为当解释变量和目标变量之间的关系没有得到很好的理解时,机器学习是最有用的(毕竟,这是我们希望学习的东西),因此如何设置这些边界并不明显。例如,我们知道图像(即像素强度数组)与对应于图像语义含义的类别之间的关系非常复杂。我们如何指定一个模型,既允许这种复杂性,又相对受限?

   在机器学习模型中引入归纳偏差以解决此问题的一种特别有效的方法是利用对称性原则——在这一点上应该不足为奇!

   给定一大类模型,我们可以立即忽略绝大多数不遵守已知问题所表现出的对称性概念的模型。本着与爱因斯坦发现狭义相对论的精神相同的精神,我们首先注意到应该满足的对称原则,然后向后工作以找到最能描述观测数据的模型。

四、卷积神经网络 (CNN) 中的对称性

   在机器学习中如何利用这一原理的典型例子是针对计算机视觉问题的卷积神经网络(CNN)的设计。与神经网络的任何使用一样,其目的是从低级特征中分层学习高级特征。计算机视觉中最重要的对称性是平移对称性:猫眼就是猫眼,无论它出现在图像中的哪个位置。

在这里插入图片描述

   平移等方差的说明。给定一个图像(左上),应用卷积核(A)获得特征图(右上),然后平移(T)特征图(右下角)相当于先平移图像(左下角),然后应用卷积核(右下角)。[猫和特征图图像源]
CNN 通过其架构设计对平移对称性进行编码。每个神经元对应于输入的一个空间区域,并且仅连接到前一层中相应的神经元邻域。至关重要的是,每个神经元都以完全相同的方式与前一层中的相应邻域相关。因此,无论特征(例如猫眼)位于图像中的哪个位置,它都会以相同的方式刺激相应位置的神经元。卷积算子的这种属性称为平移等方差,在上图中可视化 - 将算子应用于特征后进行平移等价于平移后应用运算符。

   通过这种精心的架构设计,我们将搜索的模型空间限制在那些遵循平移等价性常识属性的模型上。从启发式的角度来看,我们可能会考虑通过确保一种模式只需要学习一次来为我们的学习算法提供帮助。我们不必在所有可能的位置学习模式,而是通过在模型本身中编码平移等方差,确保可以在所有位置识别模式。

五、将对称性集成到机器学习中,用于平面图像及其他图像

   将平移对称性集成到机器学习模型中是推动过去十年计算机视觉革命性进步的关键因素之一(结合数据和计算能力的激增)。

   这无疑有助于 2D 图像具有简单的平面形式,可以以直观且计算高效的方式对平移对称性进行编码。对于涉及具有更复杂(非平面)几何形状的数据的问题,遵守所需的对称性原则可能更加困难。处理复杂的几何需要更先进的数学机械,从而催生了几何深度学习领域。几何深度学习社区在实现这一目标方面取得了显著进展,我们将在以后的文章中进一步讨论。

六、引用

[1] Brading & Castellani, 物理学中的对称性:哲学思考 (2018), arXiv/0301097

[2] 希金斯、阿莫斯、普法、拉卡尼尔、马特、雷森德、勒希纳,迈向解开表征的定义 (2018),arXiv:1812.02230

[3] 昆斯塔特,《物理定律的对称性》(1999),https://theory.uwinnipeg.ca/users/gabor/symmetry/slide15.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/477030.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【MySQL】对表的相关操作(DDL)

👦个人主页:Weraphael ✍🏻作者简介:目前学习计网、mysql和算法 ✈️专栏:MySQL学习 🐋 希望大家多多支持,咱一起进步!😁 如果文章对你有帮助的话 欢迎 评论&#x1f4ac…

[Python人工智能] 四十四.命名实体识别 (5)利用bert4keras构建Bert-CRF实体识别模型(实体位置)

从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前文讲解如何实现中文命名实体识别研究,构建BiGRU-CRF模型实现。这篇文章将继续以中文语料为主,介绍融合Bert的实体识别研究,使用bert4keras和kears包来构建Bert+BiLSTM-CRF模型。然而,该代码最终结…

GPT模型部署后续:聊天机器人系统的扩展与优化

一、多轮对话支持 为了实现多轮对话支持,我们需要维护用户的会话上下文。这可以通过在服务器端使用一个字典来存储会话状态实现。 目录 一、多轮对话支持 下面是一个简单的扩展例子: 二、性能优化 三、用户界面与交互优化 下面是一个简单的HTML示例&…

如何使用Python进行网络安全与密码学【第149篇—密码学】

👽发现宝藏 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 用Python进行网络安全与密码学:技术实践指南 随着互联网的普及,网络…

SpringMVC 简介及入门级的快速搭建详细步骤

MVC 回顾 MVC,即Model-View-Controller(模型-视图-控制器)设计模式,是一种广泛应用于软件工程中,特别是Web应用开发中的架构模式。它将应用程序分为三个核心组件: Model(模型)&#…

论文阅读:Forget-Me-Not: Learning to Forget in Text-to-Image Diffusion Models

Forget-Me-Not: Learning to Forget in Text-to-Image Diffusion Models 论文链接 代码链接 这篇文章提出了Forget-Me-Not (FMN),用来消除文生图扩散模型中的特定内容。FMN的流程图如下: 可以看到,FMN的损失函数是最小化要消除的概念对应的…

福建科立讯通信 指挥调度管理平台 SQL注入漏洞复现(CVE-2024-2620、CVE-2024-2621)

0x01 产品简介 福建科立讯通信指挥调度管理平台是一个专门针对通信行业的管理平台。该产品旨在提供高效的指挥调度和管理解决方案,以帮助通信运营商或相关机构实现更好的运营效率和服务质量。该平台提供强大的指挥调度功能,可以实时监控和管理通信网络设备、维护人员和工作任…

java获取数据库信息为空解决方案

问题:1.可能的解决方法一2.可能的解决方法二3.可能的解决方法三4.可能的解决方法四5.可能的解决方法五(我自己问题的解决方案)总结 问题: 刚发现这个问题的时候还是在进行插入数据操作的时候,发现报错。 报错的原因是因…

java项目将静态资源中的文件转为浏览器可访问的http地址

新增一个类叫啥无所谓,主要是实现 WebMvcConfigurer 加上注解 Configuration项目启动时加入bean中 只操作addResourceHandlers这一个方法 其他都没用 文章下方附带一个简易的上传图片代码 package cn.exam.config;import org.springframework.context.annotati…

155.乐理基础-和弦固定标记法(四)加音(add)和弦六和弦意义之二

如果到这五线谱还没记住还不认识的话去看102.五线谱-高音谱号与103.五线谱-低音谱号这两个里,这里面有五线谱对应的音名,对比着看 如果一章没落下,看到这里,但是看不懂什么意思,那就强行下看,看着看着指不…

Vue+SpringBoot在线教育考试及管理平台开发(纯原创)后续还在开发,会持续更新

登录页面设计 登录页面设计思路-分为三个角色进行登录&#xff0c;分别为学生&#xff0c;教师&#xff0c;管理员。 前端将登录设计为表单形式&#xff0c;通过选项组件绑定角色参数&#xff0c;向后端传递角色信息&#xff0c;通过表单绑定向后端传递登录者所有信息 <div …

js中filter处理后端返回表格数据

<template><div><el-table:data"tableData"style"width: 100%"><el-table-column:formatter"tranForm"prop"gender"label"性别"width"180"></el-table-column><el-table-column…

K8S Storage

概述 一般情况下&#xff0c;K8S中的Pod都不应该将数据持久化到Pod中&#xff0c;因为Pod可能被随时创建和删除&#xff08;扩容或缩容&#xff09;&#xff0c;即便是StatefulSet或Operator的Pod&#xff0c;也都不建议在Pod里存放数据&#xff0c;可以将数据持久化到Host上。…

构建以太网交换网络——(以太网基础与VLAN配置实验)

实验介绍 关于本实验 以太网是一种基于CSMA/CD&#xff08;Carrier Sense Multiple Access/Collision Detection&#xff09;的共享通讯介质的数据网络通讯技术。当主机数目较多时会导致冲突严重、广播泛滥、性能显著下降甚至造成网络不可用等问题。通过交换机实现LAN互连虽然…

小程序云开发实战:通用企业产品信息展示小程序

之前做小程序都是自己搭建数据管理后台&#xff0c;比如我之前做的小程序&#xff1a;一搜就学&#xff0c;就是使用java来做管理后台&#xff0c;小程序做前端展示。但是对于简单的小程序来说&#xff0c;做一套管理后台有点拿大炮打蚊子&#xff0c;所以使用云开发就是不错的…

怎样修改grafana的Loading picture和加载的文本

登录装了grafana的linux机器 command “sudo vi /usr/share/grafana/public/views/index.html”&#xff0c;编辑配置文件。 找到.preloader__logo更改background-image. 这里可以是个url也可以是个路径。 如果想要更改加载的文字.可以更改 的内容 改完:wq保存以后退出&…

Leetcode热题100:图论

Leetcode 200. 岛屿数量 深度优先搜索法&#xff1a; 对于这道题来说&#xff0c;是一个非常经典的图的问题&#xff0c;我们可以先从宏观上面来看问题&#xff0c;也就是说在不想具体算法的前提下&#xff0c;简单的说出如何找到所有的岛屿呢&#xff1f; 如图中所示&#x…

在 MacOS 中安装

查看&#xff1a;OpenCV系列文章目录&#xff08;持续更新中......&#xff09; 上一篇&#xff1a;在基于 Android 相机预览的 CV 应用程序中使用 OpenCL 下一篇&#xff1a;基于ARM 的Linux系统的交叉编译 以下步骤已针对 MacOSX &#xff08;Mavericks&#xff09; 进行了…

NEC 78K系列MCU概述

一.初识 NEC MCU NEC&#xff0c;即日本电气株式会社&#xff0c; 经营半导体业务。 NEC 倡导“ ALL Flash”&#xff0c;即 MCU 内的程序存储器使用 Flash ROM。 为什么用 Flash ROM&#xff1f; 与掩膜 ROM 微控制器相比&#xff0c; Flash 微控制器加速了系…

开源表单设计器颗粒度级别控制表单的显示条件原理分析

表单渲染中, 有些表单的显示有不同条件, 比如需要上一个表单的开关打开,或者文本内容为 xxxx, 或者需要大于或等于或小于指定值, 或者需要选中某个选项, 或者需满足以上多个条件或在满足多个条件中的一个, 有 n 种场景选择, 这样就需要条件显示配置功能, 来满足多样化需求 预览…