【进阶五】Python实现SDVRP(需求拆分)常见求解算法——自适应大邻域算法(ALNS)

基于python语言,采用经典自适应大邻域算法(ALNS)对 需求拆分车辆路径规划问题(SDVRP) 进行求解。

目录

  • 往期优质资源
  • 1. 适用场景
  • 2. 代码调整
  • 3. 求解结果
  • 4. 代码片段
  • 参考

往期优质资源


经过一年多的创作,目前已经成熟的代码列举如下,如有需求可私信联系,表明需要的 问题与算法,原创不宜,有偿获取。
VRP问题GAACOALNSDEDPSOQDPSOTSSA
CVRP
VRPTW
MDVRP
MDHVRP
MDHVRPTW
SDVRP

1. 适用场景

  • 求解CVRP
  • 车辆类型单一
  • 车辆容量小于部分需求节点需求
  • 单一车辆基地

2. 代码调整


与CVRP问题相比,SDVRP问题允许客户需求大于车辆容量。为了使得每个客户的需求得到满足,必须派遣一辆或多辆车辆对客户进行服务,也就是需要对客户的需求进行拆分。关于如何进行拆分一般有两种方式:

  • 先验拆分策略:提前制定策略对客户的需求(尤其是大于车辆容量的客户需求)进行分解,将SDVRP问题转化为CVRP问题
  • 过程拆分策略:在车辆服务过程中对客户需求进行动态拆分

本文采用文献[1]提出的先验分割策略,表述如下:

(1)20/10/5/1拆分规则

  • m20 =max{ m ∈ Z + ∪ { 0 } ∣ 0.20 Q m < = D i m\in Z^+ \cup \{0\} | 0.20Qm <= D_i mZ+{0}∣0.20Qm<=Di }
  • m10 =max{ m ∈ Z + ∪ { 0 } ∣ 0.10 Q m < = D i − 0.20 Q m 20   m\in Z^+ \cup \{0\} | 0.10Qm <= D_i-0.20Qm_{20}~ mZ+{0}∣0.10Qm<=Di0.20Qm20  }
  • m5 =max{ m ∈ Z + ∪ { 0 } ∣ 0.05 Q m < = D i − 0.20 Q m 20 − 0.10 Q m 10 m\in Z^+ \cup \{0\} | 0.05Qm <= D_i-0.20Qm_{20}-0.10Qm_{10} mZ+{0}∣0.05Qm<=Di0.20Qm200.10Qm10 }
  • m1 =max{ m ∈ Z + ∪ { 0 } ∣ 0.01 Q m < = D i − 0.20 Q m 20 − 0.10 Q m 10 − 0.05 Q m 5 m\in Z^+ \cup \{0\} | 0.01Qm <= D_i-0.20Qm_{20}-0.10Qm_{10}-0.05Qm_{5} mZ+{0}∣0.01Qm<=Di0.20Qm200.10Qm100.05Qm5 }

(2)25/10/5/1拆分规则

  • m25 =max{ m ∈ Z + ∪ { 0 } ∣ 0.25 Q m < = D i m\in Z^+ \cup \{0\} | 0.25Qm <= D_i mZ+{0}∣0.25Qm<=Di }
  • m10 =max{ m ∈ Z + ∪ { 0 } ∣ 0.10 Q m < = D i − 0.25 Q m 25   m\in Z^+ \cup \{0\} | 0.10Qm <= D_i-0.25Qm_{25}~ mZ+{0}∣0.10Qm<=Di0.25Qm25  }
  • m5 =max{ m ∈ Z + ∪ { 0 } ∣ 0.05 Q m < = D i − 0.25 Q m 25 − 0.10 Q m 10 m\in Z^+ \cup \{0\} | 0.05Qm <= D_i-0.25Qm_{25}-0.10Qm_{10} mZ+{0}∣0.05Qm<=Di0.25Qm250.10Qm10 }
  • m1 =max{ m ∈ Z + ∪ { 0 } ∣ 0.01 Q m < = D i − 0.25 Q m 25 − 0.10 Q m 10 − 0.05 Q m 5 m\in Z^+ \cup \{0\} | 0.01Qm <= D_i-0.25Qm_{25}-0.10Qm_{10}-0.05Qm_{5} mZ+{0}∣0.01Qm<=Di0.25Qm250.10Qm100.05Qm5 }

在实现过程中,对于需求超过车辆容量的客户必须进行需求拆分,而对于未超过车辆容量的客户可以拆分也可以不拆分,这里设置了参数比例进行限制。

3. 求解结果


(1)收敛曲线
在这里插入图片描述

(2)车辆路径

在这里插入图片描述

4. 代码片段


(1)数据结构

# 数据结构:解
class Sol():
    def __init__(self):
        self.node_no_seq = None # 节点id有序排列
        self.obj = None # 目标函数
        self.fitness = None  # 适应度
        self.route_list = None # 车辆路径集合
        self.route_distance_list = None  # 车辆路径长度集合
# 数据结构:网络节点
class Node():
    def __init__(self):
        self.id = 0 # 节点id
        self.x_coord = 0 # 节点平面横坐标
        self.y_coord = 0 # 节点平面纵坐标
        self.demand = 0 # 节点需求
# 数据结构:全局参数
class Model():
    def __init__(self):
        self.best_sol = None # 全局最优解
        self.demand_id_list = [] # 需求节点集合
        self.demand_dict = {}
        self.sol_list = [] # 解的集合
        self.depot = None # 车场节点
        self.number_of_demands = 0 # 需求节点数量
        self.vehicle_cap = 0 # 车辆最大容量
        self.distance_matrix = {} # 节点距离矩阵
        self.demand_id_list_ = [] # 经先验需求分割后的节点集合
        self.demand_dict_ = {} # 需求分割后的节点需求集合
        self.distance_matrix_ = {}  # 原始节点id间的距离矩阵
        self.mapping = {}  # 需求分割前后的节点对应关系
        self.split_rate = 0.5 # 控制需求分割的比例(需求超出车辆容量的除外)
        self.popsize = 100 # 种群规模

        self.rand_d_max = 0.4  # 随机破坏最大破坏比例
        self.rand_d_min = 0.1  # 随机破坏最小破坏比例
        self.worst_d_min = 5  # 最坏值破坏最少破坏数量
        self.worst_d_max = 20  # 最坏值破坏最多破坏数量
        self.regret_n = 5  # 后悔值破坏数量
        self.r1 = 30  # 一等得分值
        self.r2 = 18  # 二等得分值
        self.r3 = 12  # 三等得分值
        self.rho = 0.6  # 权重衰减比例
        self.d_weight = np.ones(2) * 10  # 破坏算子权重
        self.d_select = np.zeros(2)  # 破坏算子选择次数
        self.d_score = np.zeros(2)  # 破坏算子得分
        self.d_history_select = np.zeros(2)  # 破坏算子累计选择次数
        self.d_history_score = np.zeros(2)  # 破坏算子累计得分
        self.r_weight = np.ones(3) * 10  # 修复算子权重
        self.r_select = np.zeros(3)  # 修复算子选择次数
        self.r_score = np.zeros(3)  # 修复算子得分
        self.r_history_select = np.zeros(3)  # 修复算子累计选择次数
        self.r_history_score = np.zeros(3)  # 修复算子累计得分

(2)距离矩阵

# 初始化参数
def cal_distance_matrix(model):
    for i in model.demand_id_list:
        for j in model.demand_id_list:
            d=math.sqrt((model.demand_dict[i].x_coord-model.demand_dict[j].x_coord)**2+
                        (model.demand_dict[i].y_coord-model.demand_dict[j].y_coord)**2)
            model.distance_matrix[i,j]=max(d,0.0001) if i != j else d
        dist = math.sqrt((model.demand_dict[i].x_coord - model.depot.x_coord) ** 2 + (model.demand_dict[i].y_coord - model.depot.y_coord) ** 2)
        model.distance_matrix[i, model.depot.id] = dist
        model.distance_matrix[model.depot.id, i] = dist

(3)破坏算子

# 随机破坏
def createRandomDestory(model):
    d=random.uniform(model.rand_d_min,model.rand_d_max)
    return random.sample(model.demand_id_list_,int(d*(len(model.demand_id_list_)-1)))
# 最坏值破坏
def createWorseDestory(model,sol):
    deta_f=[]
    for node_no in sol.node_no_seq:
        node_no_seq_=copy.deepcopy(sol.node_no_seq)
        node_no_seq_.remove(node_no)
        obj,_,_=calObj(node_no_seq_,model)
        deta_f.append(sol.obj-obj)
    sorted_id = sorted(range(len(deta_f)), key=lambda k: deta_f[k], reverse=True)
    d=random.randint(model.worst_d_min,model.worst_d_max)
    return [sol.node_no_seq[i] for i in sorted_id[:d]]

(4)修复算子

# 随机修复
def createRandomRepair(remove_list,model,sol):
    unassigned_node_no_seq = remove_list
    assigned_node_no_seq = [node_no for node_no in sol.node_no_seq if node_no not in remove_list]
    # insert
    for node_no in unassigned_node_no_seq:
        index=random.randint(0,len(assigned_node_no_seq)-1)
        assigned_node_no_seq.insert(index,node_no)
    new_sol=Sol()
    new_sol.node_no_seq=copy.deepcopy(assigned_node_no_seq)
    new_sol.obj,new_sol.route_list,new_sol.route_distance=calObj(assigned_node_no_seq,model)
    return new_sol
# 贪婪修复
def createGreedyRepair(remove_list,model,sol):
    unassigned_node_no_seq = remove_list
    assigned_node_no_seq = [node_no for node_no in sol.node_no_seq if node_no not in remove_list]
    #insert
    while len(unassigned_node_no_seq)>0:
        insert_node_no,insert_index=findGreedyInsert(unassigned_node_no_seq,assigned_node_no_seq,model)
        assigned_node_no_seq.insert(insert_index,insert_node_no)
        unassigned_node_no_seq.remove(insert_node_no)
    new_sol=Sol()
    new_sol.node_no_seq=copy.deepcopy(assigned_node_no_seq)
    new_sol.obj,new_sol.route_list,new_sol.route_distance=calObj(assigned_node_no_seq,model)
    return new_sol

参考

【1】 A novel approach to solve the split delivery vehicle routing problem

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/476895.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

docker入门(九)—— docker网络详细介绍

docker 网络 准备工作&#xff1a;清空所有镜像和容器 docker rm -f $(docker ps -aq) docker rmi -f $(docker images -aq)docker0 网络 查看本地网络 ip addr[rootiZbp15293q8kgzhur7n6kvZ /]# ip addr# 本地回环网络 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc…

社交媒体的未来:探讨Facebook的发展趋势

引言 在数字化时代&#xff0c;社交媒体已经成为人们日常生活中不可或缺的一部分。作为全球最大的社交媒体平台之一&#xff0c;Facebook一直在不断地追求创新&#xff0c;以满足用户日益增长的需求和适应科技发展的变革。本文将探讨Facebook在未来发展中可能面临的挑战和应对…

谷粒商城——缓存的概念

1. 使用缓存的好处&#xff1a;减少数据库的访问频率&#xff0c;提高用户获取数据的速度。 2. 什么样的数据适合存储到缓存中&#xff1f; ①及时性、数据一致性要求不高的数据&#xff0c;例如物流信息、商品类目信息 ②访问量大更新频率不高的数据(读多、写少) 3. 读模式…

把txt、pdf等文件转为一行一行的doccano数据集输入格式

文章目录 doccano 数据集导入简介代码实现代码运行结果代码公开 doccano 数据集导入 在Doccano 导入数据集时&#xff0c;使用TextLine的文件格式&#xff0c;导入的文件需要为一行一行文本的数据格式&#xff0c;每一行文本在导入Doccano后就是一条数据。 简介 主要工作说明…

docker镜像安装空间不足no space left on device

报错&#xff1a;Error processing tar file(exit status 1): open /usr/local/lib/libmkl_tbb_thread.so.1: no space left on device 原先docker模型保存位置&#xff1a; docker info -f ‘{{ .DockerRootDir}}’ docker 高点版本&#xff0c;这里26.0 解决参考&#xf…

评论家:大型语言模型可以通过工具交互式批评进行自我修正(ICLR2024)

1、写作动机&#xff1a; 大语言模型有时会显示不一致性和问题行为&#xff0c;例如产生幻觉事实、生成有缺陷的代码或创建令人反感和有毒的内容。与这些模型不同&#xff0c;人类通常利用外部工具来交叉检查和改进他们的初始内容&#xff0c;比如使用搜索引擎进行事实检查&am…

R语言Meta分析核心技术:回归诊断与模型验证

R语言作为一种强大的统计分析和绘图语言&#xff0c;在科研领域发挥着日益重要的作用。其中&#xff0c;Meta分析作为一种整合多个独立研究结果的统计方法&#xff0c;在R语言中得到了广泛的应用。通过R语言进行Meta分析&#xff0c;研究者能够更为准确、全面地评估某一研究问题…

【理解机器学习算法】之Clustering算法(DBSCAN)

DBSCAN&#xff08;基于密度的空间聚类应用噪声&#xff09;是数据挖掘和机器学习中一个流行的聚类算法。与K-Means这样的划分方法不同&#xff0c;DBSCAN特别擅长于识别数据集中各种形状和大小的聚类&#xff0c;包括存在噪声和离群点的情况。 以下是DBSCAN工作原理的概述&am…

C#探索之路基础篇(1):编程中面向过程、数据、对象的概念辨析

文章目录 C#探索之路基础篇(1)&#xff1a;编程中面向过程、数据、对象的概念辨析1 面向过程编程1.1 概念1.2 示例代码&#xff1a;1.3 使用范围与时机&#xff1a;1.4 注意事项&#xff1a;1.5 通俗讲法 2 面向对象编程2.1 概念2.2 示例代码2.3 使用范围2.4 注意事项2.5 通俗讲…

计算机网络2 TCP/IP协议

目录 1 前言2 传输层2.1 端口号2.2 UDP2.3 TCP 3 网络层3.1 IP 4 数据链路层4.1 以太网4.2 ARP 5 DNS6 NAT 1 前言 2 传输层 2.1 端口号 端口号又分为&#xff1a; 知名端口&#xff1a;知名程序在启动之后占用的端口号&#xff0c;0-1023。 HTTP, FTP, SSH等这些广为使用的…

Multi-Raft 架构, 数据Shard分区,数据迁移

Raft 与 Multi Raft PingCAP TiKV课程笔记课程链接 数据是以region&#xff08;也叫Raft Group)为单位进行存储的。一个region默认会有3个副本&#xff0c;存在不同的TiKV Node上。副本中的一个节点为leader。所有的读写流量只走leader&#xff0c;leader定期向follower发送心…

docker 修改日志存储路径

docker 日志默认存放在 /var/lib/docker/ 下 docker info修改步骤&#xff1a; 1、停止docker服务 systemctl stop docker 2、新建配置文件 vi /etc/docker/daemon.json添加如下内容 {"data-root": "/data/docker" }3、然后把之前的数据全部复制到新目…

基于Springboot的高校图书馆座位预约系统+数据库+报告+免费远程调试

开发语言&#xff1a;Java 开发工具:IDEA /Eclipse 数据库:MYSQL5.7 使用框架:springbootvue JDK版本&#xff1a;jdk1.8 项目介绍: 基于Springboot的高校图书馆座位预约系统。Javaee项目&#xff0c;springboot项目。采用M&#xff08;model&#xff09;V&#xff08;view&…

关于在CentOS中卸载MySQL

想要卸载MySQL当然要知道自己的MySQL是用那种方法来安装的了&#xff0c;一般来说MySQL的安装方法在市面上有三种 编译安装、YUM安装、RPM安装&#xff0c;下面会介绍到后两种安装的卸载方法 首先查看是否安装MySQL&#xff0c;一般可以看到版本信息就证明安装了 mysql -V 卸载…

Vue3 大量赋值导致reactive响应丢失问题

问题阐述 如上图所示&#xff0c;我定义了响应式对象arrreactive({data:[]})&#xff0c;尝试将indexedDB两千条数据一口气赋值给arr.data。但事与愿违&#xff0c;页面上的{{}}在展示先前数组的三秒后变为空。 问题探究 vue3的响应应该与console.log有异曲同工之妙&#xff0…

2024开年首展,加速科技展台“热辣滚烫”

3月20日&#xff0c;备受瞩目的半导体行业盛会SEMICON China 2024在上海新国际博览中心盛大启幕&#xff0c;展会汇集了来自全球的半导体领域顶尖企业与专业人士。加速科技作为业界领先的半导体测试设备供应商携重磅测试设备及解决方案精彩亮相&#xff0c;展示了最新的半导体测…

如何实现手机遥控端关机按钮同时关闭TV端和手机端界面

目前家庭电视机主要通过其自带的遥控器进行操控&#xff0c;实现的功能较为单一。例如&#xff0c;当我们要在TV端搜索节目时&#xff0c;电视机在遥控器的操控下往往只能完成一些字母或数字的输入&#xff0c;而无法输入其他复杂的内容。分布式遥控器将手机的输入能力和电视遥…

pandas读写excel,csv

1.读excel 1.to_dict() 函数基本语法 DataFrame.to_dict (self, orientdict , into ) --- 官方文档 函数种只需要填写一个参数&#xff1a;orient 即可 &#xff0c;但对于写入orient的不同&#xff0c;字典的构造方式也不同&#xff0c;官网一共给出了6种&#xff0c…

为什么3D开发要用三维模型格式转换工具HOOPS Exchange?

在当今数字化时代&#xff0c;3D技术在各个行业中扮演着愈发重要的角色&#xff0c;从产品设计到制造、建筑、医疗保健等领域。然而&#xff0c;由于不同的软件和系统使用不同的3D模型格式&#xff0c;跨平台、跨系统之间的数据交换和共享变得十分复杂。为了解决这一难题&#…

利用Python进行数据清洗与预处理:Pandas的高级用法【第147篇—Pandas的高级用法】

&#x1f47d;发现宝藏 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 利用Python进行数据清洗与预处理&#xff1a;Pandas的高级用法 在数据科学和机器学习领域&…