机器学习实战11-基于K-means算法的文本聚类分析,生成文本聚类后的文件

大家好,我是微学AI,今天给大家介绍机器学习实战11-基于K-means算法的文本聚类分析,生成文本聚类后的文件。文本聚类分析是NLP领域的一个核心任务,通过将相似的文本样本分组,可以帮助我们发现隐藏在文本数据中的模式和结构。

在本项目中,我将利用K-means算法实现文本聚类分析。K-means算法是一种常用的聚类算法,它通过迭代地将样本分配到K个簇中,并通过最小化各簇内样本的平方误差之和来确定最佳的簇划分。通过将文本数据转化为向量表示,并利用K-means算法对向量进行聚类,我们可以实现文本的自动分类和分组。

目录
一、引言
二、文本聚类分析的基础知识
三、文本聚类分析项目的设计与实施
四、文本聚类分析实现代码案例
五、文本聚类分析的优缺点与挑战
六、文本聚类分析的未来发展趋势
七、结论

一、引言

文本聚类分析是一种将文本数据进行分类和组织的技术,它通过发现文本之间的相似性和关联性,将相似的文本归为一类。文本聚类在实际应用中具有重要意义,能够帮助我们理解大规模文本数据的结构和内容,从而发现隐藏在其中的信息和模式。

二、文本聚类分析的基础知识

文本聚类是指将文本数据集分成若干个不相交的类别,使得同一类内的文本相似度较高,不同类之间的相似度较低。常用的文本聚类算法包括K-means算法和层次聚类算法。K-means算法通过迭代优化,将文本数据划分为K个簇,每个簇具有相似性;层次聚类算法则通过计算不同文本之间的相似度,逐步合并最相似的文本,直到形成一个完整的聚类树。

在文本聚类中,文本表示是一个关键问题。常用的文本表示方法包括词袋模型和TF-IDF。词袋模型将文本表示为一个向量,其中每个维度表示某个特定词汇在文本中的出现次数;TF-IDF则考虑了词汇的频率和在整个文本集中的重要性。

K-means算法的数学原理可以通过以下公式表示:

给定一个包含n个样本的数据集 X = { x 1 , x 2 , . . . , x n } X=\{x_1, x_2, ..., x_n\} X={x1,x2,...,xn},其中每个样本 x i x_i xi是一个d维向量 ( x i 1 , x i 2 , . . . , x i d ) (x_{i1}, x_{i2}, ..., x_{id}) (xi1,xi2,...,xid)。K-means算法旨在将这些样本分为K个簇,其中每个样本属于一个且仅属于一个簇。

首先,我们需要选择K个初始聚类中心 μ = { μ 1 , μ 2 , . . . , μ K } \mu=\{\mu_1, \mu_2, ..., \mu_K\} μ={μ1,μ2,...,μK},其中每个聚类中心是一个d维向量。

然后,算法的迭代过程如下:

  1. 对于每个样本 x i x_i xi,计算其与各个聚类中心的距离(通常使用欧氏距离或其他距离度量方法),并将其归类到离它最近的聚类中心所对应的簇。
  2. 对于每个簇,计算其所有样本的平均值作为新的聚类中心。
  3. 重复步骤1和步骤2,直到满足停止条件(例如,达到最大迭代次数或聚类中心不再发生明显变化)。

K-means算法的优化目标是最小化所有样本与其所属簇中心的距离之和,也就是最小化以下目标函数:
J = ∑ i = 1 n ∑ j = 1 K r i j ∣ ∣ x i − μ j ∣ ∣ 2 J = \sum_{i=1}^{n} \sum_{j=1}^{K} r_{ij} ||x_i - \mu_j||^2 J=i=1nj=1Krijxiμj2
其中, r i j r_{ij} rij表示样本 x i x_i xi归属于簇 j j j的指示变量,若 x i x_i xi属于簇 j j j r i j = 1 r_{ij}=1 rij=1,否则 r i j = 0 r_{ij}=0 rij=0

通过迭代的优化过程,K-means算法将不断更新聚类中心,直到找到一组使目标函数 J J J最小化的最终聚类结果。

需要注意的是,K-means算法对于不同的初始聚类中心选择可能收敛到不同的局部最优解。为了克服这个问题,可以使用多次运行或其他启发式方法来改善聚类结果。

三、文本聚类分析项目的设计与实施

在进行文本聚类分析项目时,首先需要进行数据收集与预处理。数据可以来自各种渠道,如新闻报道、社交媒体等,但需要进行清洗和去除噪声。接下来是文本特征提取与表示,可以使用词袋模型或TF-IDF方法将文本转化为向量表示。然后需要选择适合的聚类算法,并进行参数调优。最后,对聚类结果进行评估指标和可视化展示,以便更好地理解和解释聚类结果。

四、文本聚类分析实现代码案例

这里可以给出一个具体的文本聚类分析实现代码案例,例如使用Python语言和scikit-learn库实现K-means聚类算法,将新闻文本数据集进行聚类。

#coding utf-8
import csv
import jieba
from sklearn.cluster import KMeans
from sklearn.feature_extraction.text import TfidfVectorizer
import pandas as pd
import os
import re
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

# 对中文文本进行分词
def tokenize_text(text):
    return " ".join(jieba.cut(text))

# 去除标点符号
def remove_punctuation(text):
    punctuation = '!"#,。、$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'
    text = re.sub(r'[{}]+'.format(punctuation), '', text)
    return text

# 将分词后的文本转化为tf-idf矩阵
def text_to_tfidf_matrix(texts):
    tokenized_texts = [tokenize_text(remove_punctuation(text)) for text in texts]
    vectorizer = TfidfVectorizer()
    tfidf_matrix = vectorizer.fit_transform(tokenized_texts)
    return tfidf_matrix

# 聚类函数
def cluster_texts(tfidf_matrix, n_clusters):
    kmeans = KMeans(n_clusters=n_clusters)
    kmeans.fit(tfidf_matrix)
    return kmeans.labels_

# 保存聚类结果到新的CSV文件
def save_clusters_to_csv(filename, texts, labels):
    base_filename, ext = os.path.splitext(filename)
    output_filename = f"{base_filename}_clusters{ext}"
    with open(output_filename, "w", encoding="utf-8", newline="") as csvfile:
        csvwriter = csv.writer(csvfile)
        for text, label in zip(texts, labels):
            csvwriter.writerow([text, label])
    return output_filename

# 输出聚类结果
def print_cluster_result(texts, labels):
    clusters = {}
    for i, label in enumerate(labels):
        if label not in clusters:
            clusters[label] = []
        clusters[label].append(texts[i])

    for label, text_list in clusters.items():
        print(f"Cluster {label}:")
        for text in text_list:
            print(f"  {text}")

def text_KMeans(filename,n_clusters):
    df = pd.read_csv(filename, encoding='utf-8')  # 读取csv文件
    texts = df['text'].tolist()  # 提取文本数据为列表格

    print(df.iloc[:, [0, -1]])
    # 将文本转化为tf-idf矩阵
    tfidf_matrix = text_to_tfidf_matrix(texts)
    # 进行聚类
    labels = cluster_texts(tfidf_matrix, n_clusters)
    clusters = []
    for i, label in enumerate(labels):
        clusters.append(label)

    df['cluster'] = clusters

    output = 'data_clustered.csv'
    df.to_csv('data_clustered.csv', index=False, encoding='utf-8')

    return output,labels,tfidf_matrix

def pca_picture(labels,tfidf_matrix):
    # 进行降维操作并将结果保存到DataFrame中
    pca = PCA(n_components=3)
    result = pca.fit_transform(tfidf_matrix.toarray())
    result_df = pd.DataFrame(result, columns=['Component1', 'Component2', 'Component3'])

    # 将聚类结果添加到DataFrame中
    result_df['cluster'] = labels

    # 绘制聚类图形
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    colors = ['red', 'blue', 'green']
    for i in range(3):
        subset = result_df[result_df['cluster'] == i]
        ax.scatter(subset['Component1'], subset['Component2'], subset['Component3'], color=colors[i], s=50)
    ax.set_xlabel("Component 1")
    ax.set_ylabel("Component 2")
    ax.set_zlabel("Component 3")
    plt.show()

if __name__ == "__main__":
    # 加载中文文本
    filename = "data.csv"
    n_clusters =3
    output,labels,tfidf_matrix = text_KMeans(filename, n_clusters)
    pca_picture(labels, tfidf_matrix)

运行利用PCA算法生成3D图像:
在这里插入图片描述

五、文本聚类分析的优缺点与挑战

文本聚类分析具有以下优点:能够提供洞察力,帮助我们了解文本数据的结构和内容;能够实现自动化聚类,减少人工干预;能够高效处理大规模数据,加快分析速度。

然而,文本聚类也存在一些缺点:由于聚类是基于相似性的,因此对于主观性较强的文本数据,可能会出现分类不准确的情况;聚类算法通常需要标注数据进行训练和调优,这在某些场景下可能难以获取;处理噪声和冗余信息也是一个挑战。

此外,文本聚类还面临一些挑战:高维度问题,即当文本特征维度较高时,聚类结果可能不准确或难以解释;语义相似性问题,由于自然语言的复杂性,文本之间的语义相似性难以捕捉;类别不平衡问题,即不同类别的文本样本数量差异较大,可能影响聚类的效果。

六、文本聚类分析的未来发展趋势

未来,文本聚类分析可能朝着以下方向发展:(可以提出一些观点,如结合深度学习方法改进文本特征表示、应用领域的拓展等)

七、结论

文本聚类分析是一种重要的技术,能够帮助我们理解和组织大规模文本数据。通过选择合适的算法和特征表示方法,并克服相关挑战,我们可以获得准确和可解释的聚类结果。随着技术的不断进步,文本聚类分析在各个领域都有着广泛的应用前景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/47601.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

springboot运行报错Failed to load ApplicationContext for xxx

Failed to load ApplicationContext for报错解决方法 报错Failed to load ApplicationContext for 报错Failed to load ApplicationContext for 网上找了一堆方法都尝试了还是没用 包括添加mapperScan&#xff0c;添加配置类 配置pom文件 [外链图片转存失败,源站可能有防盗链机…

前端技术搭建(动态图片)拖拽拼图!!(内含实现原理)

文章目录 前端技术搭建&#xff08;动态图片&#xff09;拖拽拼图(内含实现原理)导言功能介绍效果演示链接&#xff08;觉得不错的&#xff0c;请一键三连嘤嘤嘤&#xff09;项目目录页面搭建css样式设置工具函数游戏实现逻辑 开源地址总结 前端技术搭建&#xff08;动态图片&a…

数据结构【排序】

第七章 排序 一、排序 1.定义&#xff1a;将无序的数排好序 &#xff1b; 2.稳定性&#xff1a; Kᵢ和Kⱼ中&#xff0c;Kᵢ优先于Kⱼ那么在排序后的记录中仍然保持Kᵢ优先&#xff1b; 3.评价标准&#xff1a;执行时间和所需的辅助空间&#xff0c;其次是算法的稳定性&#xf…

不用科学操作!Google Play谷歌商店App下载使用小技巧,超详细指南

昨天文章发出后&#xff0c;有朋友在群里说&#xff0c;不如出个如何使用谷歌商店的教程。 注&#xff1a;谷歌商店、Google Play、Play商店均表示同一个APP&#xff0c;只是叫法不同而已。 我发现这是一个艰难的任务&#xff0c;受限于手机品牌及操作系统版本&#xff0c;即使…

【C语言】文件操作(二)

&#x1f490; &#x1f338; &#x1f337; &#x1f340; &#x1f339; &#x1f33b; &#x1f33a; &#x1f341; &#x1f343; &#x1f342; &#x1f33f; &#x1f344;&#x1f35d; &#x1f35b; &#x1f364; &#x1f4c3; 目录 &#x1f4cc;补充1.sprintf2.…

Android NDK工具使用

快速定位到NDK安装目录 打开你的 .bash_profile vim &#xff5e;/.bash_profile 设置ndk的环境变量 ANDROID_HOME"/Users/xxxx/Library/Android/sdk" export NDK${PATH}:${ANDROID_HOME}/ndk/21.3.6528147 //这个就是你的快捷指令 alias ndkalias ndk${ANDROID_…

安装支持vs2019的MFC(解决MSBuild 错误 MSB8041、MSB8042)

安装支持MFC的vs2019&#xff08;解决MSBuild 错误 MSB8041、MSB8042&#xff09; 常用安装选项解决MSBuild 错误 常用安装选项 解决MSBuild 错误 安装上述勾选内容后&#xff0c;即可解决MSBuild 错误 MSB8041 MSB8041&#xff1a;此项目需要 MFC/ATL 库。 https://learn.mic…

力扣算法 704 35 34 69 367二分查找

704.二分查找 给定一个 n 个元素有序的&#xff08;升序&#xff09;整型数组 nums 和一个目标值 target &#xff0c;写一个函数搜索 nums 中的 target&#xff0c;如果目标值存在返回下标&#xff0c;否则返回 -1。 二分查找法 class Solution { public:int search(vecto…

Langchain 和 Chroma 的集成

Langchain 和 Chroma 的集成 1. Chroma2. 基本示例​3. 基本示例(包括保存到磁盘)4. 将 Chroma Client 传递到 Langchain ​5. 基本示例(使用 Docker 容器)6. 更新和删除7. 带分数的相似性搜索​ 1. Chroma Chroma 是一个人工智能原生开源矢量数据库&#xff0c;专注于开发人员…

Linux Ubuntu crontab 添加错误 提示:no crontab for root - using an empty one 888

资料 错误提示&#xff1a; no crontab for root - using an empty one 888 原因剖析&#xff1a; 第一次使用crontab -e 命令时会让我们选择编辑器&#xff0c;很多人会不小心选择默认的nano&#xff08;不好用&#xff09;&#xff0c;或则提示no crontab for root - usin…

数据库对象

二十、数据库对象-视图 二十一、数据库对象-索引 age字段没有索引&#xff0c;查找需要扫描全表&#xff1a; name字段做了唯一索引&#xff0c;查找一次&#xff1a; 二十二、数据库对象-事务 事务的隔离级别和问题&#xff1a;

HTML渐变效果:线性渐变与径向渐变详解

简介 在HTML中,你可以使用CSS来创建渐变效果,给元素添加丰富的背景样式。本文将详细介绍HTML中的渐变效果,并提供示例代码帮助你理解和应用。 线性渐变(Linear Gradient) 线性渐变通过沿一条直线给元素应用颜色的渐变效果。你可以定义起始点和结束点之间的颜色过渡方式。…

深度学习-第R1周心脏病预测

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 我的环境&#xff1a; 语言环境&#xff1a;Python3.10.7编译器&#xff1a;VScode深度学习环境&#xff1a;TensorFlow 2.13.0 一、前期工作&#xff1a; …

【沁恒蓝牙mesh】数据收发接口与应用层模型传递

本文主要描述了沁恒蓝牙mesh SDK的蓝牙数据收发接口&#xff0c;以及应用层的回调函数解析以及模型传递 这里写目录标题 1. 数据收发接口1.1【发送数据】1.2 【数据接收】 2. 应用层模型分析 1. 数据收发接口 1.1【发送数据】 /*&#xff08;1&#xff09;接口1 */ /*接口一&…

逻辑斯特回归

*分类是离散的&#xff0c;回归是连续的 下载数据集 trainTrue&#xff1a;下载训练集 逻辑斯蒂函数保证输出值在0-1之间 能够把实数值映射到0-1之间 导函数类似正态分布 其他饱和函数sigmoid functions 循环神经网络经常使用tanh函数 与线性回归区别 塞戈马无参数&#x…

光伏圈告别「看天吃饭」,塞浦路斯大学耗时 2 年,发现机器学习预测污染损失未来可期

内容一览&#xff1a;光伏系统是一种利用太阳能发电的可再生能源解决方案&#xff0c;具有减少温室气体排放、分散式发电、经济效益等优势&#xff0c;对于推动可持续能源发展和应对环境挑战具有重要作用。然而&#xff0c;许多具有最高太阳辐射的地点也存在地面干燥、多尘的缺…

PHP反序列化漏洞之魔术方法

一、魔术方法 PHP魔术方法&#xff08;Magic Methods&#xff09;是一组特殊的方法&#xff0c;它们在特定的情况下会被自动调用&#xff0c;用于实现对象的特殊行为或提供额外功能。这些方法的名称都以双下划线开头和结尾&#xff0c;例如: __construct()、__toString()等。 …

jenkins中配置了发送邮件,构建后却没有发邮件Not sent to the following valid addresse

【问题描述】&#xff1a;jekins中配置了发送邮件&#xff0c;构建后却没有发邮件的问题&#xff0c;构建报错&#xff1a;Not sent to the following valid addresse 【报错显示】&#xff1a; 【问题定位】&#xff1a;Extended E-mail Notification中&#xff0c;没有配置…

工具推荐:Linux Busybox

文章首发地址 BusyBox是一个开源的、轻量级的、可嵌入式的、多个Unix工具的集合。BusyBox提供了各种Unix工具的实现&#xff0c;包括文件处理工具、网络工具、shell工具、系统管理工具、进程管理工具等等。它被设计为一个小巧、高效、可靠、易于维护的工具&#xff0c;适用于嵌…

Folx Pro 5 最好用的Mac磁力链接BT种子下载工具

除了迅雷&#xff0c;还有哪个支持磁力链接下载&#xff1f;Mac电脑如何下载磁力链接&#xff1f;经常有小伙伴问老宅。今天&#xff0c;老宅给大家推荐Folx Pro For Mac&#xff0c;Mac系统超好用的磁力下载工具。 Folx是一款功能强大且易于使用的Mac下载管理器&#xff0c;并…