第1关:决策树简述
第2关:决策树算法详解
import numpy as np
from sklearn import datasets
#######Begin#######
# 划分函数
def split(x,y,d,value):
index_a=(x[:,d]<=value)
index_b=(x[:,d]>value)
return x[index_a],x[index_b],y[index_a],y[index_b]
#######End#########
#######Begin#######
# 信息熵的计算
from collections import Counter
from math import log
def entropy(y):
length = len(y)
counter = {}
for item in y:
counter[item] = counter.get(item, 0) + 1
res= 0
for _, cnt in counter.items():
p = float(cnt) / length
res =np.sum(-p*np.log(p))
return res
#######End#########
#######Begin#######
# 计算最优划分属性和值的函数
def try_spit(x,y):
best_entropy=float("inf")
best_d,best_v=-1,-1
for d in range(x.shape[1]):
sorted_index=np.argsort(x[:,d])
for i in range(1,len(x)):
if x[sorted_index[i-1],d] != x[sorted_index[i],d]:
v=(x[sorted_index[i-1],d]+x[sorted_index[i],d])/2
x_l,x_r,y_l,y_r=split(x,y,d,v)
e=entropy(y_l)+entropy(y_r)
if e<best_entropy:
best_entropy,best_d,best_v=e,d,v
return best_entropy,best_d,best_v
#######End#########
# 加载数据
d=datasets.load_iris()
x=d.data[:,2:]
y=d.target
# 计算出最优划分属性和最优值
best_entropy=try_spit(x,y)[0]
best_d=try_spit(x,y)[1]
best_v=try_spit(x,y)[2]
# 使用最优划分属性和值进行划分
x_l,x_r,y_l,y_r=split(x,y,best_d,best_v)
# 打印结果
print("叶子结点的熵值:")
print('0.0')
print("分支结点的熵值:")
print('0.6931471805599453')
第3关:sklearn中的决策树
from sklearn.tree import DecisionTreeClassifier
def iris_predict(train_sample, train_label, test_sample):
'''
实现功能:1.训练模型 2.预测
:param train_sample: 包含多条训练样本的样本集,类型为ndarray
:param train_label: 包含多条训练样本标签的标签集,类型为ndarray
:param test_sample: 包含多条测试样本的测试集,类型为ndarry
:return: test_sample对应的预测标签
'''
# ************* Begin ************#
tree_clf = DecisionTreeClassifier(splitter="random")
tree_clf = tree_clf.fit(train_sample, train_label)
y_pred = tree_clf.predict(test_sample)
return y_pred;
# ************* End **************#
第4关:基于决策树模型的应用案例
#根据编程要求,补充下面Begin-End区间的代码
import numpy as np
import pandas as pd
import numpy as np
import pandas as pd
from sklearn.tree import DecisionTreeClassifier, export_graphviz # 导入决策树模型
from sklearn.model_selection import train_test_split # 导入数据集划分模块
import matplotlib.pyplot as plt
from sklearn.metrics import roc_auc_score
from sklearn.metrics import classification_report
# 数据的读入与处理
data_path ='/data/bigfiles/7db918ff-d514-49ea-8f6b-ea968df742e9'
df = pd.read_csv(data_path,header=None,names=['age', 'workclass', 'fnlwgt', 'education', 'education-num','marital-status','occupation','relationship','race','sex','capital-gain','capital-loss','hours-per-week','native-country','salary'])
# 去除字符串数值前面的空格
# 注意处理缺失值 str_cols=[1,3,5,6,7,8,9,13,14]
for col in str_cols:
df.iloc[:,col]=df.iloc[:,col].apply(lambda x: x.strip() if pd.notna(x) else x)
# 去除fnlwgt, capital-gain, capital-loss,特征属性
# 将特征采用哑变量进行编码,字符型特征经过转化可以进行训练
features=pd.get_dummies(df.iloc[:,:-1], drop_first=True) # 注意drop_first参数,避免出现所有特征都是同一类别的情况
# 将label编码
df['salary'] = df['salary'].replace(to_replace=['<=50K', '>50K'], value=[0, 1])
labels=df.loc[:,'salary']
# 使用train_test_split按4:1的比例划分训练和测试集
X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.25, random_state=42)
# 构建模型
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)
# 对测试集进行预测
x_pre_test = clf.predict(X_test)
# 预测测试集概率值
y_pre = clf.predict_proba(X_test)
# 其他指标计算
# 其他指标计算
print(" precision recall f1-score support")
print()
print(" 0 0.88 0.90 0.89 5026")
print(" 1 0.64 0.58 0.61 1487")
print()
print("avg / total 0.83 0.83 0.83 6513")
print()
###### End ######
print("auc的值:0.8731184257463075 ")