刷题DAY27 | LeetCode 39-组合总和 40-组合总和II 131-分割回文串

39 组合总和(medium)

给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。

candidates 中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。

对于给定的输入,保证和为 target 的不同组合数少于 150 个。

思路:回溯法模版,可以利用排序进行剪枝

代码实现:

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {
        if (sum == target) {
            result.push_back(path);
            return;
        }

        // 如果 sum + candidates[i] > target 就终止遍历
        for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
            sum += candidates[i];
            path.push_back(candidates[i]);
            backtracking(candidates, target, sum, i);
            sum -= candidates[i];
            path.pop_back();

        }
    }
public:
    vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
        result.clear();
        path.clear();
        sort(candidates.begin(), candidates.end()); // 需要排序
        backtracking(candidates, target, 0, 0);
        return result;
    }
};

详细解析:
思路视频
代码实现文章


40 组合总和II(medium)

给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的每个数字在每个组合中只能使用 一次 。

注意:解集不能包含重复的组合。

思路:回溯法,关键在于去重操作,分清树层去重和树枝去重

本题的难点在于集合(数组candidates)有重复元素,但还不能有重复的组合。而把所有组合求出来,再用set或者map去重很容易超时!

所以要在搜索的过程中就去掉重复组合。

都知道组合问题可以抽象为树形结构,那么“使用过”在这个树形结构上是有两个维度的,一个维度是同一树枝上使用过,一个维度是同一树层上使用过。

那么问题来了,我们是要同一树层上使用过,还是同一树枝上使用过呢?

回看一下题目,元素在同一个组合内是可以重复的,怎么重复都没事,但两个组合不能相同。

所以我们要去重的是同一树层上的“使用过”,同一树枝上的都是一个组合里的元素,不用去重。

为了理解去重我们来举一个例子,candidates = [1, 1, 2], target = 3

选择过程树形结构如图所示:

40.组合总和II

  1. 递归函数参数

与39.组合总和套路相同,此题还需要加一个bool型数组used,用来记录同一树枝上的元素是否使用过。这个集合去重的重任就是used来完成的。

代码如下:

vector<vector<int>> result; // 存放组合集合
vector<int> path;           // 符合条件的组合
void backtracking(vector<int>& candidates, int target, int sum, int startIndex, vector<bool>& used) {
  1. 递归终止条件

与39.组合总和相同,终止条件为 sum > target 和 sum == target。

代码如下:

if (sum > target) { // 这个条件其实可以省略
    return;
}
if (sum == target) {
    result.push_back(path);
    return;
}

sum > target 这个条件其实可以省略,因为在递归单层遍历的时候,会有剪枝的操作,下面会介绍到。

  1. 单层搜索的逻辑

这里与39.组合总和最大的不同就是要去重了。

前面我们提到:要去重的是“同一树层上的使用过”,如何判断同一树层上元素(相同的元素)是否使用过了呢。

如果candidates[i] == candidates[i - 1] 并且 used[i - 1] == false,就说明:前一个树枝,使用了candidates[i - 1],也就是说同一树层使用过candidates[i - 1]。此时for循环里就应该做continue的操作。

  • used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
  • used[i - 1] == false,说明同一树层candidates[i - 1]使用过

为什么 used[i - 1] == false 就是同一树层呢,因为同一树层,used[i - 1] == false 才能表示,当前取的 candidates[i] 是从 candidates[i - 1] 回溯而来的。而 used[i - 1] == true,说明是进入下一层递归,去下一个数,所以是树枝上,如图所示:

那么单层搜索的逻辑代码如下:

for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
    // used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
    // used[i - 1] == false,说明同一树层candidates[i - 1]使用过
    // 要对同一树层使用过的元素进行跳过
    if (i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == false) {
        continue;
    }
    sum += candidates[i];
    path.push_back(candidates[i]);
    used[i] = true;
    backtracking(candidates, target, sum, i + 1, used); // 和39.组合总和的区别1:这里是i+1,每个数字在每个组合中只能使用一次
    used[i] = false;
    sum -= candidates[i];
    path.pop_back();
}

注意sum + candidates[i] <= target为剪枝操作,在39.组合总和有讲解过!

代码实现1(used数组去重):

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& candidates, int target, int sum, int startIndex, vector<bool>& used) {
        if (sum == target) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
            // used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
            // used[i - 1] == false,说明同一树层candidates[i - 1]使用过
            // 要对同一树层使用过的元素进行跳过
            if (i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == false) {
                continue;
            }
            sum += candidates[i];
            path.push_back(candidates[i]);
            used[i] = true;
            backtracking(candidates, target, sum, i + 1, used); // 和39.组合总和的区别1,这里是i+1,每个数字在每个组合中只能使用一次
            used[i] = false;
            sum -= candidates[i];
            path.pop_back();
        }
    }

public:
    vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
        vector<bool> used(candidates.size(), false);
        path.clear();
        result.clear();
        // 首先把给candidates排序,让其相同的元素都挨在一起。
        sort(candidates.begin(), candidates.end());
        backtracking(candidates, target, 0, 0, used);
        return result;
    }
};

代码实现2(直接用startIndex去重):

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {
        if (sum == target) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
            // 要对同一树层使用过的元素进行跳过
            if (i > startIndex && candidates[i] == candidates[i - 1]) {
                continue;
            }
            sum += candidates[i];
            path.push_back(candidates[i]);
            backtracking(candidates, target, sum, i + 1); // 和39.组合总和的区别1,这里是i+1,每个数字在每个组合中只能使用一次
            sum -= candidates[i];
            path.pop_back();
        }
    }

public:
    vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
        path.clear();
        result.clear();
        // 首先把给candidates排序,让其相同的元素都挨在一起。
        sort(candidates.begin(), candidates.end());
        backtracking(candidates, target, 0, 0);
        return result;
    }
};

详细解析:
思路视频
代码实现文章


131 分割回文串(medium)

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是
回文串。返回 s 所有可能的分割方案。

思路:回溯法应用在分割上

本题这涉及到两个关键问题:

  • 切割问题,有不同的切割方式
  • 判断回文

这种题目,想用for循环暴力解法,可能都不那么容易写出来,所以要换一种暴力的方式,就是回溯。

我们来分析一下切割,其实切割问题类似组合问题。

例如对于字符串abcdef:

  • 组合问题:选取一个a之后,在bcdef中再去选取第二个,选取b之后在cdef中再选取第三个…。
  • 切割问题:切割一个a之后,在bcdef中再去切割第二段,切割b之后在cdef中再切割第三段…。

所以切割问题,也可以抽象为一棵树形结构,如图:

131.分割回文串

递归用来纵向遍历,for循环用来横向遍历,切割线(就是图中的红线)切割到字符串的结尾位置,说明找到了一个切割方法。

此时可以发现,切割问题的回溯搜索的过程和组合问题的回溯搜索的过程是差不多的。

  1. 递归函数参数

全局变量数组path存放切割后回文的子串,二维数组result存放结果集。 (这两个参数可以放到函数参数里)

本题递归函数参数还需要startIndex,因为切割过的地方,不能重复切割,和组合问题也是保持一致的。

代码如下:

vector<vector<string>> result;
vector<string> path; // 放已经回文的子串
void backtracking (const string& s, int startIndex) {
  1. 递归函数终止条件

从树形结构的图中可以看出:切割线切到了字符串最后面,说明找到了一种切割方法,此时就是本层递归的终止条件。

那么在代码里什么是切割线呢?

在处理组合问题的时候,递归参数需要传入startIndex,表示下一轮递归遍历的起始位置,这个startIndex就是切割线。

所以终止条件代码如下:

void backtracking (const string& s, int startIndex) {
    // 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了
    if (startIndex >= s.size()) {
        result.push_back(path);
        return;
    }
}
  1. 单层搜索的逻辑

来看看在递归循环中如何截取子串呢?

for (int i = startIndex; i < s.size(); i++)循环中,我们 定义了起始位置startIndex,那么 [startIndex, i] 就是要截取的子串。

首先判断这个子串是不是回文,如果是回文,就加入在vector<string> path中,path用来记录切割过的回文子串。

代码如下:

for (int i = startIndex; i < s.size(); i++) {
    if (isPalindrome(s, startIndex, i)) { // 是回文子串
        // 获取[startIndex,i]在s中的子串
        string str = s.substr(startIndex, i - startIndex + 1);
        path.push_back(str);
    } else {                // 如果不是则直接跳过
        continue;
    }
    backtracking(s, i + 1); // 寻找i+1为起始位置的子串
    path.pop_back();        // 回溯过程,弹出本次已经添加的子串
}

注意切割过的位置,不能重复切割,所以,backtracking(s, i + 1); 传入下一层的起始位置为i + 1。

代码实现:

class Solution {
private:
    vector<vector<string>> result;
    vector<string> path; // 放已经回文的子串
    void backtracking (const string& s, int startIndex) {
        // 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了
        if (startIndex >= s.size()) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i < s.size(); i++) {
            if (isPalindrome(s, startIndex, i)) {   // 是回文子串
                // 获取[startIndex,i]在s中的子串
                string str = s.substr(startIndex, i - startIndex + 1);
                path.push_back(str);
            } else {                                // 不是回文,跳过
                continue;
            }
            backtracking(s, i + 1); // 寻找i+1为起始位置的子串
            path.pop_back(); // 回溯过程,弹出本次已经添加的子串
        }
    }
    bool isPalindrome(const string& s, int start, int end) {
        for (int i = start, j = end; i < j; i++, j--) {
            if (s[i] != s[j]) {
                return false;
            }
        }
        return true;
    }
public:
    vector<vector<string>> partition(string s) {
        result.clear();
        path.clear();
        backtracking(s, 0);
        return result;
    }
};

详细解析:
思路视频
代码实现文章

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/475576.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

4 CUDA 环境搭建

4.1 简介 本章面向从未接触过CUDA的初学者。我们将依次介绍如何在不同操作系统上安装CUDA、有哪些可用的CUDA 工具以及CUDA如何编译代码&#xff0c;最后介绍应用程序接口提供的错误处理手段&#xff0c;并帮助读者识别CUDA代码和开发过程中必然碰到的应用程序接口报错。Windo…

二、typescript基础语法

一、条件语句 二、函数 1、有名函数 function add(x:number, y:number):number {return x y;}2、匿名函数 let add function (x:number, y:number):number {return x y;}函数可选参数 function buildName(firstname: string, lastname?:string) {if (lastname) {return fi…

MT2492 16V输入 600KHz 2A DCDC同步降压转换器 航天民芯一级代理

深圳市润泽芯电子有限公司为航天民芯一级代理 描述 MT2492是一款完全集成的高效率产品2A同步整流降压变换器。MT2492在一段时间内高效运行宽输出电流负载范围。该设备提供两种工作模式&#xff0c;即PWM控制和PFM模式切换控制在更宽的工作范围内实现高效率加载。MT2492需要…

k8s系列之十四安装Istio

Istio 是一个开源的服务网格&#xff08;Service Mesh&#xff09;&#xff0c;用于连接、管理和保护微服务。它提供了一组功能强大的工具&#xff0c;包括流量管理、安全性、监控和跟踪等&#xff0c;以帮助在微服务架构中更好地管理服务之间的通信。 一些主要的 Istio 功能包…

【VTKExamples::Points】第五期 ExtractPointsDemo

很高兴在雪易的CSDN遇见你 VTK技术爱好者 QQ:870202403 公众号:VTK忠粉 前言 本文分享VTK样例ExtractPointsDemo,并解析接口vtkExtractPoints,希望对各位小伙伴有所帮助! 感谢各位小伙伴的点赞+关注,小易会继续努力分享,一起进步! 你的点赞就是我的动力(^U…

探讨Java代码混淆加固工具

摘要 本篇博客将介绍几种常用的Java代码混淆工具&#xff0c;如ProGuard、Allatori Java Obfuscator、VirboxProtector、ipaguard和DashO。我们将深入探讨它们的特点、功能以及在保护Java应用程序安全方面的作用。此外&#xff0c;还将强调在使用Java代码混淆工具时需要注意的…

正信法律:亲戚借了钱只有转账记录能要回吗

在中国传统文化中&#xff0c;亲情与金钱往往交织在一起&#xff0c;但当亲戚借钱多年不还&#xff0c;且没有借条时&#xff0c;这份纠结便显得尤为棘手。面对这样的情况&#xff0c;我们可以采取一些明智的做法来妥善处理。 沟通始终是解决问题的钥匙。尝试与亲戚进行坦诚的对…

Java开发建议——通用准则,基本类型,类、对象及方法,字符串,数组和集合,枚举和注解,多线程和并发,性能和效率

目录 引出通用的方法和准则建议1&#xff1a;不要在常量和变量中出现易混淆的字母建议2&#xff1a;莫让常量蜕变成变量建议3&#xff1a;三元操作符的类型务必一致建议4&#xff1a;避免带有变长参数的方法重载建议5&#xff1a;别让null值和空值威胁到变长方法 建议6&#xf…

基于springboot的乐器社区网站(源码+论文)

作者主页&#xff1a;Java码库 主营内容&#xff1a;SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app等设计与开发。 收藏点赞不迷路 关注作者有好处 文末获取源码 技术选型 【后端】&#xff1a;Java 【框架】&#xff1a;spring…

C语言数据结构基础——二叉树学习笔记(三)链式二叉树以及初步认识递归思想

1.链式二叉树概念及其逻辑 每个树都要看成&#xff1a;根&#xff0c;左子树&#xff0c;右子树 链表、顺序表中的遍历方式有正序遍历和逆序遍历&#xff0c;而我们在二叉树中&#xff0c;有前序遍历、中序遍历、后序遍历、层序等多种遍历方法。 所谓 二叉树遍历 (Traversal) …

数学建模(灰色关联度 python代码 案例)

目录 介绍&#xff1a; 模板&#xff1a; 案例&#xff1a;哪些原因影响结婚率 数据标准化&#xff1a; 灰色关联度系数&#xff1a; 完整代码&#xff1a; 结果&#xff1a; 介绍&#xff1a; 灰色关联度是一种多指标综合评价方法&#xff0c;用于分析和评价不同指标之…

FPGA 实现CRC-8/ROHC(已验证)

1 FPGA crc代码在线生成工具 工具1 // vim: ts=4 sw=4 expandtab// THIS IS GENERATED VERILOG CODE. // https://bues.ch/h/crcgen // // This code is Public Domain. // Permission to use, copy, modify, and/or distribute this software for any // purpose with or wi…

多线程(CAS, ABA问题)

CAS (Compare And Swap) 比较并交换, 可以理解成是 CPU 提供一种特殊指令, 该指令是原子的, 可以用其一定程度解决线程安全问题, 具体过程如下 假设内存中有原数据 V, 寄存器中有旧的预期值 A 和修改值 B 比较 V 与 B 的值是否相等如果相等, 则将 B 写入 V返回操作是否成功 上述…

NX二次开发-调内部函数创建进度条MT_create_progress_bar

一、概述 最近学习NX二次开发&#xff0c;看到NX打开装配模型或者加载模型时会显示进度条的问题&#xff0c;个人觉得很有意思&#xff0c;然后参考阿飞2018中的文章进行学习。 二、代码解析 //User Defined Header File#include <uf.h>#include <uf_ui.h>#includ…

进阶二叉树

目录 二叉树 二叉搜索树 二叉搜索树的定义 二叉搜索树的操作 哈夫曼树 哈夫曼树的定义 哈夫曼树的构造 哈夫曼树的性质 平衡二叉树 平衡二叉树的定义&#xff1a; 平衡二叉树的插入调整 1.LL插入/LL旋转 2.RR插入/RR旋转 3.LR插入/LR旋转 4.RL插入/RL旋转 二叉树…

餐饮小程序的功能与点餐收费解析

随着移动互联网的发展&#xff0c;越来越多的餐饮企业开始开发自己的餐饮小程序&#xff0c;以便更好地满足顾客的需求。那么&#xff0c;餐饮小程序到底需要哪些功能呢&#xff1f;开通点餐又是否需要收费呢&#xff1f;本文将从这两个方面为您进行详细的解答。 一、餐饮小程序…

【抽奖第5天】大厂游戏云服务器0门槛抽奖送!云服务器选购推荐 京东云 阿里云 腾讯云对比 幻兽帕鲁 雾锁王国 省钱学生党

好消息&#xff1a;抽奖活动开启&#xff01;时间&#xff1a;3月17日——3月24日 最高奖品&#xff1a;16G 6个月&#xff1b;32G 3个月 抽奖规则&#xff1a;B站点赞评论关注即可参与抽奖&#xff0c;3.24日公布获奖名单。 抽奖地址&#xff1a; 【首次抽奖】16G、32G免费…

mysql数据库如何安装

1.第一步需要下载mysql,直接官方下载。如果想要现成的可以私聊我。 2.解压mysql-5.7.44-winx64.zip文件 3.新建my.ini 注意&#xff1a;basedir、datadir改成你自己的按照路径 需要新建data文件夹设置 mysql 数据库的数据的存放目录 [mysql] # 设置 mysql 客户端默认字符…

【进程概念】进程控制块task_struct-PCB

文章目录 进程的概念如何描述进程?**为什么要描述一个进程**&#xff1f;进程描述--PCBtask_struct 组织进程查看进程通过系统调用获取进程标示符getpid()以及getppid() 进程的概念 在【百度百科】中&#xff0c;关于进程---- 狭义定义&#xff1a;进程是 正在运行 的程序的实…

Vue中的状态管理Vuex,基本使用

1.什么是Vuex? Vuex是专门为Vue.js设计的状态管理模式;特点:集中式存储和管理应用程序中所有组件状态,保证状态以一种可预测的方式发生变化。 1.1.什么是状态管理模式? 先看一个单向数据流的简单示意图 state:驱动应用的数据源 view:以声明方式将state映射到视图 actions:…