Chain of Note-CoN增强检索增强型语言模型的鲁棒性

Enhancing Robustness in Retrieval-Augmented Language Models

检索增强型语言模型(RALMs)在大型语言模型的能力上取得了重大进步,特别是在利用外部知识源减少事实性幻觉方面。然而,检索到的信息的可靠性并不总是有保证的。检索到无关数据可能导致回答偏离正轨,甚至可能使模型忽略其固有的知识,即使它拥有足够的信息来回答查询。此外,标准的RALMs通常难以评估它们是否拥有足够的知识,包括内在知识和检索到的知识,以提供准确的答案。在知识缺乏的情况下,这些系统理想情况下应该以“未知”回应无法回答的问题。为了应对这些挑战,我们引入了CHAIN-OF-NOTING(CON),这是一种新颖的方法,旨在提高RALMs在面对噪声、无关文档和未知场景时的鲁棒性。CON的核心思想是为检索到的文档生成顺序阅读笔记,从而彻底评估它们与给定问题的相关性,并将这些信息整合以形成最终答案。我们使用ChatGPT为CON创建训练数据,随后在LLaMa-2 7B模型上进行了训练。我们在四个开放领域问答基准上的实验表明,装备了CON的RALMs显著优于标准的RALMs。特别是,CON在完全噪声检索文档的情况下,EM分数平均提高了+7.9,在实时问题超出预训练知识范围的情况下的拒绝率提高了+10.5。

在这篇论文中,我们介绍了CHAIN-OF-NOTING(CON)框架,这是一种新颖的方法论,旨在增强RALMs的鲁棒性。CON的核心概念围绕着为每个检索到的文档生成顺序阅读笔记。这个过程允许深入评估文档与提出问题的相关性,并帮助合成这些信息以构建最终的答案。我们使用了ChatGPT来生成CON的初始训练数据,然后使用LLaMa-2 7B模型进一步优化这些数据。我们在各种开放领域问答基准上的测试表明,集成了CON的RALMs在性能上显著超过了传统的RALMs。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/473764.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

阿里云99元服务器40G ESSD Entry系统盘够用吗?

阿里云99元服务器40G ESSD Entry云盘够用吗?够用,操作系统占15GB左右,还有25G富余。如果是40G ESSD Entry系统盘不够用,还可以为云服务器另外挂载数据盘,所以不用担心40G系统盘不够用。可以在阿里云CLUB中心查看 aliyu…

基于SpringBoot实现WebSocket实时通讯的服务端和客户端

实现功能 服务端注册的客户端的列表;服务端向客户端发送广播消息;服务端向指定客户端发送消息;服务端向多个客户端发送消息;客户端给服务端发送消息; 效果: 环境 jdk:1.8 SpringBoot&#x…

some/ip CAN CANFD

关于SOME/IP的理解 在CAN总线的车载网络中,通信过程是面向信号的 当ECU的信号的值发生了改变,或者发送周期到了,就会发送消息,而不考虑接收者是否需要,这样就会造成总线上出现不必要的信息,占用了带宽 …

get_local_ip.bat:快速获取IPv4地址

批处理脚本,用于在Windows命令提示符下获取本地计算机的IPv4地址。 echo off ipconfig | findstr IPv4 pause - echo off:这会关闭命令提示符窗口中的命令回显,使得在运行脚本时不会显示每条命令的执行结果。 - ipconfig:这是一…

流畅的 Python 第二版(GPT 重译)(十三)

第二十四章:类元编程 每个人都知道调试比一开始编写程序要困难两倍。所以如果你在编写时尽可能聪明,那么你将如何调试呢? Brian W. Kernighan 和 P. J. Plauger,《编程风格的要素》 类元编程是在运行时创建或自定义类的艺术。在 P…

元素定位之xpath和css

元素定位 xpath绝对路径相对路径案例xpath策略(路径)案例xpath策略(层级、扩展)属性层级与属性层级与属性拓展层级与属性综合 csscss选择器(id、类、标签、属性)id选择器类选择器标签选择器属性选择器案例-…

按面积筛选填充二值图中的孔洞-python源码

目录 🙋🙋需求 🍅🍅解决方案 🙋🙋需求 前提条件是二值图中0是背景,255是前景。 二值化后的影像中有很多小孔洞,现在需要按孔洞面积进行筛选,填充面积小于阈值的孔洞&…

何恺明重提十年之争——模型表现好是源于能力提升还是捕获数据集偏见

2011年,知名学者Antonio Torralba和Alyosha Efros提出了“数据集偏差之战”,他们发现机器学习模型很容易“过拟合”到特定的数据集上,导致在其他数据集上表现不佳。过去十年,随着深度学习革命的到来,建立多样化、大规模、全面且尽…

三级数据库技术考点(详解!!)

1、 答疑:【解析】分布式数据库系统按不同层次提供的分布透明性有:分片透明性;②位置透明性;③局部映像透明性,位置透明性是指数据分片的分配位置对用户是透明的,用户编写程序时只需 要考虑数据分片情况,不需要了解各分片在各个场地的分配情…

GitHub配置SSH Key(详细版本)

GitHub配置SSH Key的目的是为了帮助我们在通过git提交代码是,不需要繁琐的验证过程,简化操作流程。比如新建的仓库可以下载, 但是提交需要账号密码。 步骤 一、设置git的user name和email 如果你是第一次使用,或者还没有配置过的话需要操作…

zookeeper底层细节

zk 临时节点和watch机制实现注册中心自动注册和发现,数据都在内存,nio 多线程模型; cp注重一致性,数据不一致时集群不可用 事务请求处理方式 1.all事务由唯一服务器处理 2.将客户端事务请求转成proposal分发follower 3.等待半…

基于Jenkins + Argo 实现多集群的持续交付

作者:周靖峰,青云科技容器顾问,云原生爱好者,目前专注于 DevOps,云原生领域技术涉及 Kubernetes、KubeSphere、Argo。 前文概述 前面我们已经掌握了如何通过 Jenkins Argo CD 的方式实现单集群的持续交付&#xff0c…

Maven,pom.xml,查找 子jar包

在IDEA打开pom.xml&#xff0c;会看到这里&#xff1a; 然后如果有需要&#xff0c;把相关的 子jar包 去掉 <dependency><groupId>XXX</groupId><artifactId>XXX</artifactId><exclusions><exclusion><artifactId>xxx</a…

Node.js核心命令与工具:提升开发效率的实用指南

&#x1f31f; 前言 欢迎来到我的技术小宇宙&#xff01;&#x1f30c; 这里不仅是我记录技术点滴的后花园&#xff0c;也是我分享学习心得和项目经验的乐园。&#x1f4da; 无论你是技术小白还是资深大牛&#xff0c;这里总有一些内容能触动你的好奇心。&#x1f50d; &#x…

HarmonyOS NEXT应用开发之Web组件预览PDF文件实现案例

介绍 本案例通过Web组件实现预览本地PDF文件和预览网络PDF文件&#xff0c;代码为Tabs容器组件包含了两个独立的TabContent子组件&#xff0c;分别标示为预览本地PDF文件和预览网络PDF文件。每个子组件内部构建一个Web组件。第一个Web组件利用resource协议关联本地PDF文件路径…

Docker系列

目录 练习&#xff1a;去DockerHub搜索并拉取一个Redis镜像 练习&#xff1a;去DockerHub搜索并拉取一个Redis镜像 目标&#xff1a; 1&#xff09;去DockerHub搜索Redis镜像 2&#xff09;查看Redis镜像的名称和版本 3&#xff09;利用docker pull命令拉取镜像 查看是否…

计算机网络简答题:复试+期末

文章目录 1.计算机网络的功能:2.计算机网络的分类:3.主机间的通信方式:4.电报交换、报文交换、分组交换的区别:5.计算机网络的性能指标:6.0SI模型和TCP/IP模型:7.通信信通的方式:8.端到端的通信与点到点通信的区别:9.同步通信和异步通信:10.频分复用、时分复用、波分复用和码分…

【Qt】常用控件

目录 一、控件概述 二、QWidget 三、Buttons类控件 3.1 QPushButton 3.2 QRadioButton 3.3 QCheckBox 3.4 QToolButton 四、Display Widgets&#xff08;显示类控件&#xff09; 4.1 QLabel 4.2 QLCDNumber 4.3 QProgressBar 4.4 QCalendarWidget 五、Input Widge…

深度学习 | 神经网络

一、神经网络原理 1、神经元模型 虽然叫个神经元&#xff0c;但骨子里还是线性模型。 2、神经网络结构 顾名思义就是由很多个神经元结点前后相连组成的一个网络。虽然长相上是个网络&#xff0c;但是本质上是多个线性模型的模块化组合。 在早期也被称为 多层感知机 Multi-Layer…

【java】java环境变量分类

测试代码&#xff1a; public class TestSys {public static void main(String[] args) {/*** 获取所有的系统环境变量*/Map<String, String> map System.getenv();map.forEach((key, value) -> System.out.printf("env&#xff1a;key:%s->value:%s%n"…