【C语言】结构体的内存对齐问题

1.结构体内存对齐

我们已经基本掌握了结构体的使用了。那我们现在必须得知道结构体在内存中是如何存储的?内存是如何分配的?所以我们得知道如何计算结构体的大小?这就引出了我们今天所要探讨的内容:结构体内存对齐。

1.1 对齐规则

首先得掌握结构体的对齐规则:
1. 结构体的第⼀个成员对⻬到和结构体变量起始位置偏移量为0的地址处。
2. 其他成员变量要对⻬到某个数字(对⻬数)的整数倍的地址处。
对齐数 = 编译器默认的⼀个对⻬数 与 该成员变量大小的较⼩值
- VS 中默认对齐数的值为 8
- Linux中 gcc 没有默认对⻬数,对⻬数就是成员⾃⾝的大小
3. 结构体总大小为最⼤对⻬数(结构体中每个成员变量都有⼀个对⻬数,所有对⻬数中最⼤的)的
整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体成员对⻬到⾃⼰的成员中最⼤对⻬数的整数倍处,结构
体的整体⼤⼩就是所有最⼤对⻬数(含嵌套结构体中成员的对⻬数)的整数倍。
范例1:
//范例1
struct S1
{
	char c1;//1 8 1
	int i;  //4 8 4
	char c2;//1 8 1
};

int main()
{
	struct S1 s1 = { 0 };
	printf("%zd\n", sizeof(s1));

	return 0;
}

我们画图分析一下:

我们运行一下结果看看,是不是12个字节:

确实是12个字节,这就说明,结构体在内存存储中,存在内存对齐的原则。

范例2:

//范例2
struct S2
{
	char c1;
	char c2;
	int i;
};

int main()
{
	struct S2 s2 = { 0 };
	printf("%zd\n", sizeof(s2));

	return 0;
}

同样的道理:

运行结果:

范例3:

//范例3
struct S3
{
	double d;//8 8 8
	char c;  //1 8 1
	int i;   //4 8 4
};


int main()
{
	struct S3 s3 = { 0 };
	printf("%zd\n", sizeof(s3));

	return 0;
}

运行结果:

范例4:

//范例4
struct S3
{
	double d;//8 8 8
	char c;  //1 8 1
	int i;   //4 8 4
};

struct S4
{
	char c1;
	struct S3 s3;
	double d;
};

int main()
{
	struct S4 s4 = { 0 };
	printf("%zd\n", sizeof(s4));

	return 0;
}

运行结果:

1.2 为什么存在内存对齐?

⼤部分的参考资料都是这样说的:
1. 平台原因 (移植原因):
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
2.性能原因:
数据结构(尤其是栈)应该尽可能地在⾃然边界上对⻬。原因在于,为了访问未对⻬的内存,处理器需要作两次内存访问;⽽对⻬的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地 址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以⽤⼀个内存操作来读或者写值了。否则,我们可能需要执⾏两次内存访问,因为对象可能被分放在两个8字节内存块中。
总体来说:结构体的内存对⻬是拿空间来换取时间的做法。
那在设计结构体的时候,我们既要满⾜对⻬,⼜要节省空间,如何做到:
让占⽤空间⼩的成员尽量集中在⼀起
 //例如:
 struct S1
 {
     char c1;//1 8 1
     int i;  //4 8 4
     char c2;//1 8 1
 };
//sizeof(struct S1) -> 12个字节

 struct S2
 {
     char c1;//1 8 1
     char c2;//1 8 1
     int i;  //4 8 4
 };
//sizeof(struct S2) -> 8个字节

1.3 修改默认对齐数

#pragma 这个预处理指令,可以改变编译器的默认对齐数。
#include <stdio.h>

#pragma pack(1)//设置默认对⻬数为1
struct S
{
 char c1;
 int i;
 char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认
int main()
{
 //输出的结果是什么?
 printf("%d\n", sizeof(struct S));

 return 0;
}
结构体在对齐方式不合适的时候,我们可以自己更改默认对齐数。

运行结果:

2.结构体传参

struct S
{
    int data[1000];
    int num;
};
struct S s = {{1,2,3,4}, 1000};
//结构体传参
void print1(struct S s)
{
     printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
     printf("%d\n", ps->num);
}
int main()
{
     print1(s); //传结构体
     print2(&s); //传地址

     return 0;
}
上⾯的 print1 print2 函数哪个好些?
答案是:首选print2函数。
原因:
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递⼀个结构体对象的时候,结构体过⼤,参数压栈的的系统开销⽐较⼤,所以会导致性能的下降。
结论:
结构体传参的时候,要传结构体的地址。

3.结构体实现位段

结构体讲完就得讲讲结构体实现位段的能力。

3.1 什么是位段

位段的声明和结构是类似的,有两个不同:
1. 位段的成员必须是 int、unsigned int 或signed int ,在C99中位段成员的类型也可以
    选择其他类型。
2. 位段的成员名后边有⼀个冒号和⼀个数字。
比如:
struct A
{
 int _a:2;
 int _b:5;
 int _c:10;
 int _d:30;
};
A就是⼀个位段类型。
那位段A所占内存的大小是多少?
printf("%d\n", sizeof(struct A));

3.2 位段的内存分配

1. 位段的成员可以是 intunsigned int signed int 或者是 char 等类型
2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的⽅式来开辟的。
3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使⽤位段。
//⼀个例⼦
#include <stdio.h>
struct S
{
	char a : 3;
	char b : 4;
	char c : 5;
	char d : 4;
};
int main()
{
	struct S s = { 0 };
	s.a = 10;
	s.b = 12;
	s.c = 3;
	s.d = 4;
	//空间是如何开辟的?

	return 0;
}

3.3 位段的跨平台问题

1. int 位段被当成有符号数还是⽆符号数是不确定的。
2. 位段中最⼤位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会
    出问题。
3. 位段中的成员在内存中从左向右分配,还是从右向左分配,标准尚未定义。
4. 当⼀个结构包含两个位段,第⼆个位段成员⽐较大,⽆法容纳于第⼀个位段剩余的位时,是舍弃
    剩余的位还是利⽤,这是不确定的。
总结:
跟结构相⽐,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

3.4 位段使用的注意事项

位段的⼏个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位置处是没有地址的。内存中每个字节分配⼀个地址,⼀个字节内部的bit位是没有地址的。
所以不能对位段的成员使⽤&操作符,这样就不能使⽤scanf直接给位段的成员输⼊值,只能是先输⼊放在⼀个变量中,然后赋值给位段的成员。
struct A
{

    int _a : 2;
    int _b : 5;
    int _c : 10;
    int _d : 30;
};
int main()
{
    struct A sa = {0};
    scanf("%d", &sa._b);//这是错误的
 
    //正确的⽰范
    int b = 0;
    scanf("%d", &b);
    sa._b = b;

    return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/471525.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深入浅出Go性能监控:使用expvar库的实战指南

深入浅出Go性能监控&#xff1a;使用expvar库的实战指南 引言expvar库概览主要组件介绍如何帮助开发者监控应用性能 实战开始&#xff1a;配置和初始化导入expvar库初始化expvar创建和注册自定义Var实例 监控关键数据使用expvar监控内存使用监控Goroutines数量自定义业务指标监…

软件测评中心:进行科技成果鉴定测试的注意事项和好处简析

软件产品科技成果鉴定是有效评价科技成果质量和水平的方法之一&#xff0c;也是鼓励科技成果通过市场竞争等方式得到有效的评价和认可&#xff0c;可以推动科技成果的进步和转化。 一、进行科技成果鉴定测试时的注意事项&#xff1a;   1、应由具备一定资质和能力的专业机构…

综合实验---Web---进阶版

目录 实验配置&#xff1a; 1.PHP调整主配置文件时&#xff0c;修改文件内容 1.原内容调整(在编译安装的情况下) 2.调整如下 3.没有调整的&#xff0c;根据之前配置就行 2.配置Nginx支持PHP解析 1.原内容如下 2.调整如下 3.验证PHP测试页 1.原内容如下 2.调整如下 4…

Ethsign银河活动开启,简单参与领6个NFT

简介&#xff1a;EthSign是一个基于区块链技术的去中心化电子签名平台&#xff0c;目的是解决传统中心化电子签名服务的各种问题。用户可以使用钱包或社交媒体帐户生成的私钥签署文件和协议&#xff0c;数字签名记录在链上&#xff0c;文件经过加密存储在去中心化存储网络中&am…

51-31 CVPR’24 | VastGaussian,3D高斯大型场景重建

2024 年 2 月&#xff0c;清华大学、华为和中科院联合发布的 VastGaussian 模型&#xff0c;实现了基于 3D Gaussian Splatting 进行大型场景高保真重建和实时渲染。 Abstract 现有基于NeRF大型场景重建方法&#xff0c;往往在视觉质量和渲染速度方面存在局限性。虽然最近 3D…

OSPF特殊区域(stub\nssa)

stub区域——只有1类、2类、3类&#xff1b;完全stub区域——只有1类、2类 NSSA区域&#xff1a;本区域将自己引入的外部路由发布给其他区域&#xff0c;但不需要接收其他区域的路由 在NSSA区域的路由器上&#xff0c;引入外部路由时&#xff0c;不会转换成5类LSA&#xff0c…

【保姆级教程】如何拥有GPT?(Proton邮箱版)

OnlyFans 订阅教程移步&#xff1a;【保姆级】2024年最新Onlyfans订阅教程 Midjourney 订阅教程移步&#xff1a; 【一看就会】五分钟完成MidJourney订阅 GPT-4.0 升级教程移步&#xff1a;五分钟开通GPT4.0 如果你需要使用Wildcard开通GPT4、Midjourney或是Onlyfans的话&am…

故障诊断 | 一文解决,RBF径向基神经网络的故障诊断(Matlab)

文章目录 效果一览文章概述专栏介绍模型描述源码设计参考资料效果一览 文章概述

【暑期实习记录】腾讯oc

部门&#xff1a;实习基地 - 无意向 - csig腾讯云捞 TimeLine 3.3 压线投递实习基地 3.6 一面 主要深问项目&#xff0c;包括设计、困难点、亮点、迭代过程、对比、测试和部署等&#xff0c;然后问了一些相关的八股&#xff0c;一道简单sql和简单算法 之后反问面试官他对应…

操作系统知识-操作系统作用+进程管理-嵌入式系统设计师备考笔记

0、前言 本专栏为个人备考软考嵌入式系统设计师的复习笔记&#xff0c;未经本人许可&#xff0c;请勿转载&#xff0c;如发现本笔记内容的错误还望各位不吝赐教&#xff08;笔记内容可能有误怕产生错误引导&#xff09;。 本章的主要内容见下图&#xff1a; 1、操作系统的作用…

【ACL 2023获奖论文】再现奖:Do CoNLL-2003 Named Entity Taggers Still Work Well in 2023?

【ACL 2023获奖论文】再现奖&#xff1a;Do CoNLL-2003 Named Entity Taggers Still Work Well in 2023? 写在最前面动机主要发现和观点总结 正文1引言6 相关工作解读 2 注释一个新的测试集以度量泛化CoNLL数据集的创建数据集统计注释质量与评估者间协议目标与意义 3 实验装置…

Keil笔记(缘更)

Keil 一、使用Keil时可能会出现的问题1.Project框不见了2.添加文件时找不到3.交换文件位置4.main.c测试报1 warning5.搜索CtrlF 二、STLINK点灯操作1.配置寄存器进行点灯2.使用库函数进行点灯 3.GPIO1.LED闪烁4.按键控制LED 注&#xff1a; 一、使用Keil时可能会出现的问题 1.…

SpringBoot中使用验证码easy-captcha

easy-captcha使用的大概逻辑: 当一个请求发送到后端服务器请求验证,服务器使用easy-captcha生成一个验证码图片,并通过session将验证信息保存在服务器,当用户登录校验时候,会从ession中取出对比是否一致 但是前后端分离之后 由于跨域问题 以上就无法实现了 下面这种情况没…

带你深度吃透Vue3 中计算属性 computed() 的使用

文章目录 导语&#xff1a;概念案例计算属性缓存机制计算属性调试computed() 标注类型扩展性能优化 前情摘要&#xff1a; 本文是在基于 Vue3 的&#xff1a;v3.4.21 版本基础上进行整理的。后续官方如有版本更新有关 计算属性 (computed) 的新特性欢迎留言讨论。 导语&#xf…

文献阅读(213)MCM Allreduce

题目&#xff1a;Enhancing Collective Communication in MCM Accelerators for Deep Learning Training会议&#xff1a;HPCA时间&#xff1a;2024研究机构&#xff1a;德州农工 本篇论文的主要贡献&#xff1a; 我们提出了两种新的基于网格的MCM加速器的AllReduce算法 Ring…

Redis中文乱码问题

最近排查问题&#xff0c;发现之前的开发将日志写在redis缓存中&#xff08;不建议这样做&#xff09;&#xff0c;我在查看日志的时候发现没办法阅读&#xff0c;详细是这样的&#xff1a; 查阅资料后发现是进制问题&#xff0c;解决方法是启动客户端的时候将redis-cli改为red…

IDEA Git恢复DropCommit删除的提交

刚刚Dorp commit了&#xff0c;本地代码也被删除了&#xff0c;如何恢复呢&#xff0c; 从项目中登录git&#xff0c;找到刚刚的commit代码&#xff0c;如下所示&#xff1a;输入命令git reflog 复制代码&#xff0c;到idea中&#xff0c;打开GIt&#xff0c;找到RESET HEAD, …

Lightroom Classic 2024 for mac 中文激活:强大的图像后期处理软件

对于追求极致画面效果的摄影师来说&#xff0c;Lightroom Classic 2024无疑是Mac平台上的一款必备软件。它凭借其强大的功能和出色的性能&#xff0c;赢得了众多摄影师的青睐。 软件下载&#xff1a;Lightroom Classic 2024 for mac 中文激活版下载 在Lightroom Classic 2024中…

浅谈游戏地图中位置实时更新的技术方案

地图如今在游戏中发挥的作用越来越重要&#xff0c;随着电子竞技的兴起&#xff0c;地图逐渐成为了为玩家创造体验的直接舞台。希望本文能对有兴趣了解游戏地图背后实现原理的同学一些帮助。 什么是游戏地图 在游戏中可以通过3D场景虚拟一个完整的世界&#xff0c;当3D场景较为…

综合练习(python)

前言 有了前面的知识积累&#xff0c;我们这里做两个小练习&#xff0c;都要灵活运用前面的知识。 First 需求 根据美国/英国各自YouTube的数据&#xff0c;绘制出各自的评论数量的直方图 第一版 import numpy as np from matplotlib import pyplot as plt import matplo…