💡💡💡本文独家改进:HWD的核心思想是应用Haar小波变换来降低特征图的空间分辨率,同时保留尽可能多的信息,与传统的下采样方法相比,有效降低信息不确定性。
💡💡💡使用方法:代替YOLOv9的ADown进行使用
YOLOv9魔术师专栏
☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️
包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、24年最新顶会改进思路、原创自研paper级创新等
☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️
✨✨✨ 新开专栏暂定免费限时开放,后续每月调价一次✨✨✨
🚀🚀🚀 本项目持续更新 | 更新完结保底≥50+ ,冲刺100+🚀🚀🚀
🍉🍉🍉 联系WX: AI_CV_0624 欢迎交流!🍉🍉🍉
🍉🍉🍉 专属微信交流群 欢迎交流!🍉🍉🍉
YOLOv9魔改:注意力机制、检测头、blcok魔改、自研原创等
YOLOv9魔术师
💡💡💡全网独家首发创新(原创),适合paper !!!
💡💡💡 2024年计算机视觉顶会创新点适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!
💡💡💡重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!
1.YOLOv9原理介绍
论文: 2402.13616.pdf (arxiv.org)
代码:GitHub - WongKinYiu/yolov9: Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information摘要: 如今的深度学习方法重点关注如何设计最合适的目标函数,从而使得模型的预测结果能够最接近真实情况。同时,必须设计一个适当的架构,可以帮助获取足够的信息进行预测。然而,现有方法忽略了一个事实,即当输入数据经过逐层特征提取和空间变换时,大量信息将会丢失。因此,YOLOv9 深入研究了数据通过深度网络传输时数据丢失的重要问题,即信息瓶颈和可逆函数。作者提出了可编程梯度信息(programmable gradient information,PGI)的概念,来应对深度网络实现多个目标所需要的各种变化。PGI 可以为目标任务计算目标函数提供完整的输入信息,从而获得可靠的梯度信息来更新网络权值。此外,研究者基于梯度路径规划设计了一种新的轻量级网络架构,即通用高效层聚合网络(Generalized Efficient Layer Aggregation Network,GELAN)。该架构证实了 PGI 可以在轻量级模型上取得优异的结果。研究者在基于 MS COCO 数据集的目标检测任务上验证所提出的 GELAN 和 PGI。结果表明,与其他 SOTA 方法相比,GELAN 仅使用传统卷积算子即可实现更好的参数利用率。对于 PGI 而言,它的适用性很强,可用于从轻型到大型的各种模型。我们可以用它来获取完整的信息,从而使从头开始训练的模型能够比使用大型数据集预训练的 SOTA 模型获得更好的结果。对比结果如图1所示。
YOLOv9框架图
2.原理介绍
链接:https://www.sciencedirect.com/science/article/abs/pii/S0031320323005174
摘要:卷积神经网络中普遍使用最大池化或跨步卷积等下采样操作(CNN)聚合局部特征,扩大感受野,并最小化计算开销。然而,对于语义分割任务,在局部邻域上池化特征可能会导致重要空间信息的丢失,这有利于逐像素预测。为了解决这个问题,我们引入了一种简单而有效的池化操作,称为基于 Haar 小波的下采样(HWD)模块。该模块可以轻松集成到 CNN 中,以增强语义分割模型的性能。HWD的核心思想是应用Haar小波变换来降低特征图的空间分辨率,同时保留尽可能多的信息。此外,为了研究 HWD 的好处,我们提出了一种新的指标,称为特征熵指数(FEI),它衡量 CNN 中下采样后的信息不确定性程度。具体来说,FEI 可用于指示下采样方法在语义分割中保留基本信息的能力。我们的综合实验表明,所提出的 HWD 模块可以(1)有效地提高具有各种 CNN 架构的不同模态图像数据集的分割性能;(2) 与传统的下采样方法相比,有效降低信息不确定性。
图1所示。DeepLabv3+中平均池化、最大池化、跨行卷积和HWD的下采样示例[13]。与传统的降采样方法相比,HWD后的特征保留了更多的边界、纹理和细节信息,如图(d)中四个红色方块所示,其中树枝得到了更好的保存。
四种不同的池化方法
图3所示。提出的HWD模块的体系结构由两个主要块组成:无损特征编码块和特征表示学习块。注意,特征映射的通道数可以通过表示学习块来调整。
3.如何将HWD加入到YOLOv9
2.1 新建models/updownsample/HWD.py
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.common import Conv
class HWD(nn.Module):
def __init__(self, in_ch, out_ch):
super(HWD, self).__init__()
from pytorch_wavelets import DWTForward
self.wt = DWTForward(J=1, mode='zero', wave='haar')
self.conv = Conv(in_ch * 4, out_ch, 1, 1)
def forward(self, x):
yL, yH = self.wt(x)
y_HL = yH[0][:,:,0,::]
y_LH = yH[0][:,:,1,::]
y_HH = yH[0][:,:,2,::]
x = torch.cat([yL, y_HL, y_LH, y_HH], dim=1)
x = self.conv(x)
return x
3.2 修改 yolo.py
1)首先进行注册
from models.updownsample.HWD import HWD
2)修改def parse_model(d, ch): # model_dict, input_channels(3)
在你源码基础上只需要加入HWD
if m in {
Conv, AConv, ConvTranspose,
Bottleneck, SPP, SPPF, DWConv, BottleneckCSP, nn.ConvTranspose2d, DWConvTranspose2d, SPPCSPC, ADown,
RepNCSPELAN4, SPPELAN,HWD}:
c1, c2 = ch[f], args[0]
if c2 != no: # if not output
c2 = make_divisible(c2 * gw, 8)
args = [c1, c2, *args[1:]]
if m in {BottleneckCSP, SPPCSPC}:
args.insert(2, n) # number of repeats
n = 1
elif m is nn.BatchNorm2d:
args = [ch[f]]
3.3 如何安装pytorch_wavelets
1)首先下载源码:
git clone https://github.com/fbcotter/pytorch_wavelets
2)然后进行安装
cd pytorch_wavelets
pip install .
2.4 yolov9-c-HWD.yaml
# YOLOv9
# parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()
# anchors
anchors: 3
# YOLOv9 backbone
backbone:
[
[-1, 1, Silence, []],
# conv down
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
# conv down
[-1, 1, Conv, [128, 3, 2]], # 2-P2/4
# elan-1 block
[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 3
# avg-conv down
[-1, 1, ADown, [256]], # 4-P3/8
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 5
# avg-conv down
[-1, 1, ADown, [512]], # 6-P4/16
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 7
# avg-conv down
[-1, 1, ADown, [512]], # 8-P5/32
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 9
]
# YOLOv9 head
head:
[
# elan-spp block
[-1, 1, SPPELAN, [512, 256]], # 10
# up-concat merge
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 7], 1, Concat, [1]], # cat backbone P4
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 13
# up-concat merge
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 5], 1, Concat, [1]], # cat backbone P3
# elan-2 block
[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]], # 16 (P3/8-small)
# avg-conv-down merge
[-1, 1, HWD, [256]],
[[-1, 13], 1, Concat, [1]], # cat head P4
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 19 (P4/16-medium)
# avg-conv-down merge
[-1, 1, HWD, [512]],
[[-1, 10], 1, Concat, [1]], # cat head P5
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 22 (P5/32-large)
# multi-level reversible auxiliary branch
# routing
[5, 1, CBLinear, [[256]]], # 23
[7, 1, CBLinear, [[256, 512]]], # 24
[9, 1, CBLinear, [[256, 512, 512]]], # 25
# conv down
[0, 1, Conv, [64, 3, 2]], # 26-P1/2
# conv down
[-1, 1, Conv, [128, 3, 2]], # 27-P2/4
# elan-1 block
[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 28
# avg-conv down fuse
[-1, 1, HWD, [256]], # 29-P3/8
[[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 31
# avg-conv down fuse
[-1, 1, HWD, [512]], # 32-P4/16
[[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 34
# avg-conv down fuse
[-1, 1, HWD, [512]], # 35-P5/32
[[25, -1], 1, CBFuse, [[2]]], # 36
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 37
# detection head
# detect
[[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]], # DualDDetect(A3, A4, A5, P3, P4, P5)
]
2.5 报错解决
将 train_dual.py
amp = check_amp(model) # check AMP
修改为
amp = False