论文浅尝 | GPT-RE:基于大语言模型针对关系抽取的上下文学习

baae3297d4013bbb01ac4127d258e60b.png

笔记整理:张廉臣,东南大学硕士,研究方向为自然语言处理、信息抽取

链接:https://arxiv.org/pdf/2305.02105.pdf

1、动机

在很多自然语言处理任务中,上下文学习的性能已经媲美甚至超过了全资源微调的方法。但是,其在关系抽取任务上的性能却不尽如人意。以GPT-3为例,一些基于GPT-3的上下文学习抽取方法在关系抽取任务上不理想的效果主要来自于两个方面:① 检索演示示例中实体、关系的相关度较低;② 大语言模型具有将NULL例子错误分类成为预定义关系类型的强烈倾向。造成①的原因主要是以上方法通过随机选择或基于句子表示的K近邻法检索演示示例。这会导致演示示例实体、关系的相关度低;造成②的原因主要是相对于符合预定义类型的示例,NULL示例的复杂度更高,该类型是包含各种未定义的关系的集合。针对以上问题,该论文提出了结合实体感知检索策略和事实标签诱导策略的GPT-RE,以提高基于大语言模型的上下文学习在关系抽取任务上的性能。

2、贡献

该论文的主要贡献包括:

1)提出了实体感知检索策略和事实标签诱导策略,实体感知检索策略能够在演示检索中结合实体信息,获取更适合关系抽取任务的表示;事实标签诱导策略能够引导大语言模型输出更理想的结果;

2)通过实验验证了结合以上两种策略的基于大语言模型的上下文学习框架能够在关系抽取任务中取得很好的效果,在测试数据集上的性能已经赶上甚至超过了现有全监督基线模型;

3、方法

33fa327eb2ff2af4e2b541c28a3852a5.png

图1 GPT-RE框架

GPT-RE是一个使用GPT-3的基于上下文学习的关系抽取框架,其具体方法如下:

3.1 提示构建:

GPT-RE的提示主要包括三部分,分别是:①任务描述和关系预定义类型,②小样本演示示例,③输入样本。提示包含的任务描述和关系预定义类型是对关系抽取的任务描述和其相关的关系预定义类型的一个简洁概括,模型会根据这部分的内容输出预定义的关系类型,若测试样本不属于任何预定义关系类型,模型会输出NULL标签。小样本演示示例是输入模型的演示示例,其中,每条样例包含文本和该文本中所包含的关系,演示示例可以通过后续推理过程进一步的丰富。输入样本为一条文本,GPT-3的任务就是输入文本中实体对所对应的关系。

3.2 实体感知演示检索:

因为演示示例在表示空间中接近测试样本可以使模型表现出更好的性能,最近的一些工作使用K近邻法选出与测试样本句子表示最相近的演示示例。但是,由于句子表示和关系抽取之间的差异,原始上下文的表示在关系抽取任务中不足以完全作为检索演示示例的标准,该论文提出了两种新的获取表示方法提升检索演示示例的质量。

3.2.1 实体提示句子表示:

首先,考虑到实体信息在关系抽取任务中的重要性,作者利用实体对信息重建原始上下文。其具体做法是在原文中加入描述原文中实体对关系类型的内容。在计算句子相似度时,作者使用了最新的健壮模型SimCSE来计算句子之间的相似度。

3.2.2 微调关系表示:

由于关系表示在很多情况下天然地包含了实体表示的信息,与将实体信息加入到上下文中相比,更直接的解决方法是从微调模型中提取关系表示用于检索演示示例。作者认为这种方法可以潜在地弥补GPT-3在关系抽取任务中的局限性。虽然基于GPT-3的上下文学习只使用有限的演示示例,但预训练模型的微调过程可以在整个训练集上进行。这种方法有两个优点:首先,直接使用适应关系抽取任务的关系表示可以显著提高整体检索质量;其次,由于微调后的模型可以准确识别NULL类型,因此过度预测NULL问题将得到缓解。

3.3 事实标签诱导推理:

最近的工作表明,逻辑提示可以引导大语言模型获得理想输出。在该论文中,作者让GPT-3通过相应的事实关系标签来生成每个演示示例的推理逻辑过程。例如,给定一个选定的示例,作者首先基于该示例文本提出一个提示,然后利用GPT-3生成推理上下文中实体对之间关系类型的逻辑线索。最后,作者通过将生成的线索与原始示例结合起来增强演示示例。

4、实验

该论文使用了三个开放领域关系抽取数据集和一个科学领域关系抽取数据集共四个数据集作为实验数据,分别为:Semeval 2010 task 8, TACRED, ACE05和SciERC。基于以上四个数据集的对比方法共分为两大类,第一类为传统的微调基线模型,如PURE;第二类是基于GPT-3的基线模型,如GPT-Random等。该论文对比了以上基线模型和GPT-RE在使用不同表示检索演示示例时的性能,并对比了是否加入实施标签诱导推理提示时GPT-RE的性能差异,其主实验结果如下图所示:

783b0cd2660fcb2b219395fb19a8c14a.png

图2 实验结果

此外,该论文也进行了一系列消融实验和在低资源场景下的实验,具体实验结果请参照原论文。

实验结果表明:① 在检索演示示例时,使用适合特定任务的句子表示是有必要的,无论是使用GPT-RE_SimCSE还是GPT-RE_FT都取得了比GPT-Sent更好的效果;② GPT-RE_FT表现出的性能表明,基于GPT-3的上下文学习有潜力在关系抽取上取得很好的效果,甚至已经在Semeval和SciERC上取得了SOTA效果;③ 相比于GPT-RE_SimCSE,推理模块对GPT-RE_FT的加成更小,这说明GPT-RE_FT获得的演示示例在本实验中质量更高。同时,小样本时推理模块会使模型具有更好的性能。

5、总结

总的来说,该论文探索了GPT-3 上下文学习在关系抽取任务上的潜力。针对GPT-3在此任务上存在的问题,该论文提出了两个策略弥补了基于GPT-3框架和目前SOTA基线模型的差距,实验结果表明,GPT-RE在三个数据集上显著优于微调基线模型,并在Semeval和SciERC上实现了SOTA效果。同时,作者对GPT-3如何克服现有困难,如NULL标签的影响等进行了详细的实例分析,以上工作对后续研究具有比较大的意义。


OpenKG

OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。

45c3024e094943d0d1c14afcab4d9c9b.png

点击阅读原文,进入 OpenKG 网站。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/470991.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

力扣Lc18--- 168. Excel表列名称(java版)-2024年3月19日

1.题目描述 2.知识点 注1:StringBuilder 对象的 insert() 方法用于在字符串的指定位置插入字符或字符序列。这里的第一个参数是插入位置的索引,而第二个参数是要插入的字符或字符序列。 public class InsertExample {public static void main(String[…

彻底学会系列:一、机器学习之梯度下降(2)

1 梯度具体是怎么下降的? ∂ J ( θ ) ∂ θ \frac{\partial J (\theta )}{\partial \theta} ∂θ∂J(θ)​(损失函数:用来衡量模型预测值与真实值之间差异的函数) 对损失函数求导,与学习率相乘,按梯度反方…

搭建基于 Snowflake 的 CI/CD 最佳实践!

Snowflake 提供了可扩展的计算和存储资源,和基于 SQL 的界面 Snowsight,方便用户进行数据操作和分析。然而,如果用户想将自己的 CI/CD 流程与 Snowflake 集成时,会发现一些不便之处(尤其相比其 SnowSight 优秀的查询能…

三段提交的理解

三阶段提交是在二阶段提交上的改进版本,3PC 最关键要解决的就是协调者和参与者同时挂掉的问题,所以3PC把2PC的准备阶段再次一分为二,这样三阶段提交。 处理流程如下 : 阶段一 协调者向所有参与者发出包含事务内容的 canCommit …

无人机助力违法毒品种植智能监测预警,基于轻量级YOLOv5n开发构建无人机航拍场景下的农村田园场景下非法种植罂粟花检测预警识别系统

打击毒品人人有责,毒品带来的危害是人尽皆知的,我们不仅自身要严厉拒绝接触任何形式的毒品,更要言传身教告诫他人不要与任何形式的任何渠道的毒品有关联,但是在实际生活中,在一些偏远的乡村、田园、山丘、村落等地方&a…

Markdown 最全语法指南 —— 看这一篇就够了

目录 一. 前言 二. Markdown 标题语法 三. Markdown 段落语法 四. Markdown 换行语法 五. Markdown 强调语法 六. Markdown 引用语法 七. Markdown 列表语法 八. Markdown 代码语法 九. Markdown 分隔线语法 十. Markdown 链接语法 十一. Markdown 图片语法 十二. Markdown 转义…

【技术栈】Redis 企业级解决方案

​ SueWakeup 个人主页:SueWakeup ​​​​​​​ 系列专栏:学习技术栈 ​​​​​​​ ​​​​​​​ ​​​​​​​ ​​​​​​​ ​​​​​​​ ​​​​​​​ ​​​​​​​ 个性签名&…

php 对接Pangle海外广告平台收益接口Reporting API

今天对接的是Pangle广告reporting api接口,拉取广告收益回来自己做统计。记录分享给大家 首先是文档地址,进入到Pangle后台就能看到文档地址以及参数: 文档地址:https://www.pangleglobal.com/zh/integration/reporting-api-v2 在这里插入图片…

[SWPU2019]Web4

[SWPU2019]Web4 PDO注入(堆叠注入) 首先发现一个登录框,但是不能注册进行抓包,发现json数据格式,猜测可能是sql注入或者xxe漏洞 输入 ’ 报错,但是输入"或者‘ “ 不报错->猜测为堆叠注入[[mysql…

6.shell中的计算

目录 概述实践shell结果 结束 概述 shell中计算 实践 shell #!/bin/bash # 计算 expr、let 都只能用于整形计算a3 bexpr $a 3 echo "b$b" cexpr $b / 3 echo "c$c"# let 命令 表达式 let "a10" echo "a10$a" let "a/10&quo…

拓展商城系统的未来:微服务维度的创新之路

随着电子商务的快速发展,传统的单体式商城系统在应对日益复杂的业务需求和用户体验方面逐渐显露出局限性。而基于微服务架构的商城系统,通过多维度的拆分和组合,正在为商城行业带来全新的创新和发展机遇。本文将深入探讨微服务维度下的商城系…

查找众数及中位数 - 华为OD统一考试(C卷)

OD统一考试(C卷) 分值: 100分 题解: Java / Python / C 题目描述 众数是指一组数据中出现次数量多的那个数,众数可以是多个。 中位数只是指把一组数据从小到大排列,最中间的那个数,如果这组数…

罗德与施瓦茨 FSU8频谱分析仪

181/2461/8938产品概述: Rohde & Schwarz FSU8是一款高性能频谱分析仪,在相位噪声、动态范围和测量精度方面具有出色的性能,可应对航空航天和国防领域的任何射频分析挑战,也可用于高达8 GHz的一般微波应用。 为了处理产品开…

端口如何映射到外网?

在现代信息化社会中,远程访问已经成为人们工作和生活中不可或缺的一部分。复杂的网络环境和网络限制可能会给远程连接带来不便。在这种情况下,端口映射到外网的技术应运而生。本文将介绍端口映射到外网的概念、应用场景以及一种优秀的解决方案——【天联…

五、C#归并排序算法

简介 归并排序是一种常见的排序算法,它采用分治法的思想,在排序过程中不断将待排序序列分割成更小的子序列,直到每个子序列中只剩下一个元素,然后将这些子序列两两合并排序,最终得到一个有序的序列。 归并排序实现原…

vue+elementui中table实现单选行功能

el-table插件可以选择行,但是只能多选,而项目中有单选的需求。 效果如下图所示,点击行或者点击复选框都可以选中行(高亮,复选框选中),并且每次只选中当前行,之前选中的行清空。点击标…

Spring-Mybatis字段映射

MybatisComfig.xml文件设置 <settings><setting name"mapUnderscoreToCamelCase" value"true"/> </settings> 完成全局配置将数据库下划线映射为驼峰式命名

螺栓的规格型号及表示方法——SunTorque智能扭矩系统

螺栓作为一种重要的紧固件&#xff0c;广泛应用于各种机械、设备和建筑结构中。了解和掌握螺栓的规格型号及表示方法对于正确选择和使用螺栓具有重要意义。本文SunTorque智能扭矩系统将详细介绍螺栓的规格型号及表示方法&#xff0c;帮助读者更好地理解和应用相关知识。 螺栓是…

两个免费的wordpress主模板

wordpress免费网站主题 蓝色高端大气上档次的wordpress免费网站主题&#xff0c;首页大图wordpress模板。 https://www.wpniu.com/themes/31.html WP免费模板 用粉色高端大气上档次的WP免费模板&#xff0c;建个网站也不错的。 https://www.wpniu.com/themes/16.html

海外版大宗商品现货交易系统开发/现货新篇

全球视野&#xff0c;现货新篇——揭秘海外版大宗商品现货交易系统的创新之旅 在全球化的大潮中&#xff0c;大宗商品现货交易早已成为各国经济发展的重要支柱。随着技术的日新月异&#xff0c;传统的交易方式已难以满足市场的多元化需求。而在这个背景下&#xff0c;我们隆重…