Auto-DataProcessing:一组让制作数据集变轻松的脚本

前言

最近跟同学参加了个比赛,我负责Object-Detection的技术实现,需要从网上扒大量的数据(主办方每种识别物就给了一张demo🤣),发现数据准备是一个真的是一个非常重要但又耗时耗力的过程。对我来说,给我一类待识别的标签,我一般会用以下的环节来获取数据:

  • 从Google等网站搜关键词,然后爬个几百张数据,或者直接用google的搜相似图的功能
  • 一些离线的数据增强处理
  • 数据重命名(个人习惯,用data_{index}的顺序让数据排列的整齐一点)

但是准备几千张数据来组成数据集实在是有点烦人…于是我写了一组脚本,能够自动化的实现从数据获取到数据增强,然后批量重命名的脚本,希望能给同样需要处理大量数据的小伙伴剩下一点时间。

Github仓库地址:
> https://github.com/zin-Fu/Automation-Data-Processing

p.s.如果觉得对你有帮助欢迎给我点个👀watch或者star⭐吖!

关于Auto-DataProcessing

这组脚本的主要功能如下:

  1. 🚀数据收集:

    • crawler_keyword.py: 根据指定的关键词从谷歌图像搜索下载图片。
    • crawler_similar.py: 从给定的 URL 获取图像(我是用来搜相似图的时候用的),可以从特定网站或来源收集数据。
  2. 🚀数据增强:

    • DataAugment.py: 通过应用翻转、旋转、添加噪声、高斯模糊、调整亮度对比度等多种数据增强技术,扩充和优化我们的数据集。创建多样化和鲁棒的训练数据。

3.🚀 数据管理:

  • rename.py: 重命名目录中所有图像文件,添加指定的前缀和连续编号,确保文件结构的一致。

此外,所有的参数(获取图片的数量,URL和数据增强的类型这些)都是执行之后在终端直接输入的,不用自己在代码里设定。以数据增强的脚本运行起来的终端为例:
在这里插入图片描述
我们只需要输入要处理文件的路径和选择数据增强的序号就行啦~

一些关键部分的实现

crawler_keyword.py

def google_image_scraper(keyword, num_images, save_dir):
    # Create Chrome WebDriver instance
    driver = webdriver.Chrome()
    driver.implicitly_wait(5)

google_image_scraper函数接受关键词(keyword)、图像数量(num_images)和保存目录(save_dir)作为参数。这个函数用于爬取和下载Google图像搜索结果。在函数内部,我们创建了一个Chrome WebDriver实例,并使用implicitly_wait方法设置了一个隐式等待时间,以确保页面加载完成。

    # Open Google Image Search page
    driver.get("https://www.google.com/imghp")

driver.get方法用于打开指定的URL,这里我们打开了Google图像搜索页面。

    from selenium.webdriver.common.by import By

    # Locate the search box and enter the keyword
    search_box = driver.find_element(By.NAME, "q")
    search_box.send_keys(keyword)
    search_box.send_keys(Keys.RETURN)

使用driver.find_elements方法和CSS选择器定位到所有的图像元素。然后,我们使用os.makedirs方法创建保存图像的目录。exist_ok=True参数表示如果目录已经存在,不会引发异常。

    # Download images
    downloaded_images = set()
    for i, image in enumerate(images[:num_images]):
        try:
            image_url = image.get_attribute("src")
            image_hash = hashlib.sha256(image_url.encode('utf-8')).hexdigest()
            # Check if image has been downloaded
            if image_hash in downloaded_images:
                print(f"Image {i+1} already downloaded, skipping...")
                continue
            # Check if image link is https
            if not image_url.startswith('https://'):
                print(f"Image {i+1} is not from a secure source, skipping...")
                continue
            image_path = os.path.join(save_dir, f"{keyword}_{i}.jpg")
            # Check if file already exists, if so, change filename
            counter = 0
            while os.path.exists(image_path):
                counter += 1
                image_path = os.path.join(save_dir, f"{keyword}_{i}_{counter}.jpg")
            if image_url.startswith('data:image/jpeg;base64,') or image_url.startswith('data:image/gif;base64,'):
                base64_data = image_url.split(',', 1)[1]
                image_data = base64.b64decode(base64_data)
                with open(image_path, 'wb') as f:
                    f.write(image_data)
            else:
                response = requests.get(image_url```
                with open(image_path, "wb") as f:
                    f.write(response.content)

crawler_similar.py

def download_images_from_url(url, num_images, save_dir):
    # Create Chrome WebDriver instance
    driver = webdriver.Chrome()
    driver.implicitly_wait(5)

download_images_from_url函数接受URL(url)、图像数量(num_images)和保存目录(save_dir)作为参数。这个函数用于从给定的URL下载图像。在函数内部,我们创建了一个Chrome WebDriver实例,并使用implicitly_wait方法设置了一个隐式等待时间,以确保页面加载完成。

    try:
        driver.get(url)
        # Get all image elements
        images = driver.find_elements(By.CSS_SELECTOR, "img")
        # Create directory to save images
        os.makedirs(save_dir, exist_ok=True)

使用driver.get方法打开指定的URL。然后,使用driver.find_elements方法和CSS选择器定位到页面上的所有图像元素。我们还使用os.makedirs方法创建保存图像的目录。exist_ok=True参数表示如果目录已经存在,不会引发异常。

        # Download images
        downloaded_images = set()
        for i, image in enumerate(images[:num_images]):
            try:
                image_url = image.get_attribute("src")
                if not image_url:
                    continue
                image_hash = hashlib.sha256(image_url.encode('utf-8')).hexdigest()
                # Check if image has been downloaded
                if image_hash in downloaded_images:
                    print(f"Image {i+1} already downloaded, skipping...")
                    continue

                image_save_path = os.path.join(save_dir, f"image_{i}.jpg")
                
  '''剩下的实现就跟crawler_keyword.py差不多'''

遍历图像元素列表,并尝试下载每个图像。先获取图像的URL,并使用哈希函数计算URL的哈希值。如果图像的哈希值已经在downloaded_images集合中,表示该图像已经下载过,就跳过它。然后根据索引和计数器生成图像的保存路径。如果文件已经存在,则增加计数器以避免文件名冲突。

DataAugment.py

def data_augmentation(img, techniques):
    img_list = []
    
    if '1' in techniques:
        # Flip
        img_list.append(cv2.flip(img, 1))  # Horizontal flip
        img_list.append(cv2.flip(img, 0))  # Vertical flip
        img_list.append(cv2.flip(img, -1)) # Horizontal and vertical flip

data_augmentation函数接受输入的图像和要应用的数据增强技术列表。根据技术列表中的编号,函数将应用不同的数据增强技术。在这种情况下,技术编号1表示翻转操作。通过使用cv2.flip函数,图像将水平翻转、垂直翻转和水平垂直翻转,然后将增强后的图像添加到img_list列表中。

    if '2' in techniques:
        # Rotate
        scale = 1.0
        rows, cols = img.shape[:2]
        center = (cols / 2, rows / 2)  # Image center
        angle = [45, 315]
        for a in angle:
            M = cv2.getRotationMatrix2D(center, a, scale)
            rotated = cv2.warpAffine(img, M, (cols, rows), borderValue=(255, 255, 255))
            img_list.append(rotated)

技术编号2表示旋转操作。使用cv2.getRotationMatrix2D函数获取旋转矩阵,然后使用cv2.warpAffine函数将图像应用旋转变换,生成旋转后的图像。将增强后的图像添加到img_list列表中。

    if '3' in techniques:
        # Noise
        noise_img = img.copy()
        for _ in range(1500):
            noise_img[random.randint(0, noise_img.shape[0] - 1)][random.randint(0, noise_img.shape[1] - 1)][:] = 255
        img_list.append(noise_img)

技术编号3表示添加噪声操作。首先复制原始图像,然后通过随机选择像素位置并将其设置为白色(255)来添加噪声。这里的噪声是通过在图像上随机选择位置并将其像素值设置为白色来模拟的。将增强后的图像添加到img_list列表中。

    if '4' in techniques:
        # Gaussian blur
        blur1 = cv2.GaussianBlur(img, (9, 9), 1.5)
        blur2 = cv2.blur(img, (11, 11), (-1, -1))
        img_list.append(blur1)
        img_list.append(blur2)

技术编号4表示应用高斯模糊操作。通过cv2.GaussianBlur函数和cv2.blur函数应用不同的模糊核生成模糊后的图像。将增强后的图像添加到img_list列表中。

    if '5' in techniques:
        # Lighting
        contrast = 1       # Contrast
        brightness = 100   # Brightness
        light1 = cv2.addWeighted(img, contrast, img, 0, brightness)
        light2 = cv2.addWeighted(img, 1.5, img, 0, 50)
        img_list.append(light1)
        img_list.append(light2)

其他三个增强的方式实现的原理类似。

每个脚本详细的运行方式见:readme里的详细说明

使用方法

  • 根据需求先运行两个crawler文件,获取数据
  • 用数据增强的脚本进行需要的数据增强
  • 用Rename.py脚本批量重命名

然后就得到了一个(不错的)数据集,可以去LabelImg里标注啦(打标签…感觉又入了一个大坑😭)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/468185.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥杯-Sticks-DFS搜索

题目 样例输出是 6 5 题目中给错了,不知道什么时候会改。 思路 --剪枝,否则时间复杂度和空间复杂度过大,会超时。 --注意有多组测试样例时,需要将bool数组重新赋值为false。 --函数类型不是void,return语句不能省…

Selenium 自动化 —— Selenium IDE录制、回放、导出Java源码

Hello Selenium 示例 之前我们在专栏的第一篇文章中演示了使用使用Selenium进行百度搜索的Hello world示例。 代码不复杂非常简单: public static void main(String[] args) {WebDriver driver null;try {// 设置Chrome驱动的路径 // System.setPro…

UnityShader(十八) 透明度测试

上代码: Shader "Shader入门/透明度效果/AlphaTestShader" {Properties{_MainTex ("Texture", 2D) "white" {}_CutOff("CutOff",Range(0,1))1}SubShader{Tags { "Queue""AlphaTest" "IgnorePro…

SpringBoot中使用MybatisX插件的详细过程

MybatisX 是一款针对 MyBatis 框架的 IntelliJ IDEA 的快速开发插件,旨在提高 MyBatis 开发效率的工具。它提供了一系列功能来简化 MyBatis 的配置和使用,包括 XML 文件的智能补全、快速跳转、代码生成等功能。 实现细节 (1)在I…

Milvus向量数据库检索

官方文档:https://milvus.io/docs/search.md   本节介绍如何使用 Milvus 搜索实体。   Milvus 中的向量相似度搜索会计算查询向量与具有指定相似度度量的集合中的向量之间的距离,并返回最相似的结果。您可以通过指定过滤标量字段或主键字段的布尔表达…

最细致最简单的 Arm 架构搭建 Harbor

更好的阅读体验:点这里 ( www.doubibiji.com ) ARM离线版本安装 官方提供了一个 arm 版本,但是好久都没更新了,地址:https://github.com/goharbor/harbor-arm 。 也不知道为什么不更新,我看…

MySQL—基本操作

1.创建数据库 ①CREATE DATABASE schooldb; --不进行检查和设置默认字符集 ②CREATE DATABASE IF NOT EXISTS schooldb CHARSET utf8; --进行检查和设置默认字符集 CREATE DATABASE 创建数据库 IF NOT EXISTS 意为当前数据库不存在 CHARSET 意为设置数据库字符集…

Windows server 2008 R2 在VMware虚拟机上的安装

Windows server 2008 R2 在VMware虚拟机上的安装 准备工作VMware 新建并配置虚拟机安装和启动Windows server 2008 R2 准备工作 Windows server 2008 R2 ISO镜像的下载:Windows server 2008 R2 ISO VMware 新建并配置虚拟机 第一步,点击新建虚拟机 第…

语音控制模块_雷龙发展

一 硬件原理 1,串口 uart串口控制模式,即异步传送收发器,通过其完成语音控制。 发送uart将来自cpu等控制设备的并行数据转换为串行形式,并将其串行发送到接收uart,接收uart然后将串行数据转换为接收数据接收设备的并行…

【地图】腾讯地图 - InfoWindow 自定义信息窗口内容时,内容 html 嵌套混乱问题

目录 需求描述问题问题代码页面展示 解决原因解决办法解决代码页面展示 代码汇总注 需求描述 腾讯地图上画点位,点击点位展示弹框信息 问题 问题代码 // 打开弹框 openInfoWindow(position, content) {this.infoWindow new TMap.InfoWindow({map: this.map,posit…

Elasticsearch:全文搜索的利器

1. 简介 Elasticsearch是一个基于Lucene的分布式搜索引擎,能够支持准实时的数据检索NRT(near real-time),支持海量数据的处理,包括结构化和非结构化数据,提供强大的全文搜索能力,但是ES不仅仅是一个全文搜索引擎,他能…

如何利用IP地址分析风险和保障网络安全

随着网络攻击的不断增加和演变,保障网络安全已经成为了企业和组织不可忽视的重要任务。在这样的背景下,利用IP地址分析风险和建立IP风险画像标签成为了一种有效的手段。本文将深入探讨IP风险画像标签的作用以及如何利用它来保障网络安全。 IP风险画像查…

[LLM]大语言模型文本生成—解码策略(Top-k Top-p Temperature)

{"top_k": 5,"temperature": 0.8,"num_beams": 1,"top_p": 0.75,"repetition_penalty": 1.5,"max_tokens": 30000,"message": [{"content": "你好","role": "user&…

OpenCV实现OCR图片文本检测

一、操作步骤 把左边这样的图片,通过仿射变换转换成右边那样的图片。 然后再通过pytesseract读取图片内容得到图片中的文本就好了。 需要使用到: 仿射变换ocr识别 注:本文使用现成图片,轮廓检测较为明显,若是自己拍…

CTF题型 SSTI(1) Flask-SSTI-labs 通关 题记

CTF题型 SSTI(1) Flask-SSTI-labs 通关 题记 文章目录 CTF题型 SSTI(1) Flask-SSTI-labs 通关 题记前记获取键值或下标的方式获取属性的方式 Level 1 no wafLevel 2 bl[\{\{]Level 3 no waf and blindLevel 4 bl[[, ]]获取键值或下标 Level 5 bl[\, "]Level 6 bl[_]Level …

搭建 es 集群

一、VMware准备机器 首先准备三台机器 这里我直接使用 VMware 构建三个虚拟机 都是基于 CentOS7 然后创建新用户 部署 es 需要单独创建一个用户,我这里在构建虚拟机的时候直接创建好了 然后将安装包上传 可以使用 rz 命令上传,也可以使用工具上传 工…

Linux网络命令介绍30+

目录 一、网络命令 1. ifconfig 2. ip 3. traceroute 4. ping 5. route 6. netstat 7. ss 8. dig 9. arp 10. iwconfig 11. nslookup 12. host 13. whois 14. tracepath 15. curl 16. hostname 17. wget 18. mtr 19. iftop 20. iotop 21. tcpdump 22. i…

jenkins Pipeline接入mysql

背景: jenkin pipeline进化过程如下: Jenkins Pipeline 脚本优化实践:从繁琐到简洁 >>>>> Jenkins Pipeline脚本优化:为Kubernetes应用部署增加状态检测>>>>>> 使用Jenkins和单个模板部署多个K…

Nadaraya-Watson核回归

目录 基本原理 ​编辑 核函数的选择 带宽的选择 特点 应用 与注意力机制的关系 参考内容 在统计学中,核回归是一种估计随机变量的条件期望的非参数技术。目标是找到一对随机变量 X 和 Y 之间的非线性关系。 在任何非参数回归中,变量 Y 相对于变量…

量子加速超算简介

量子加速超算简介 有用的量子计算的发展是全球政府、企业和学术界的巨大努力。 量子计算的优势可以帮助解决世界上一些与材料模拟、气候建模、风险管理、供应链优化和生物信息学等应用相关的最具挑战性的问题。 要实现量子计算的优势,需要将量子计算机集成到现有的…