计算机设计大赛 题目:基于深度学习的中文对话问答机器人

文章目录

  • 0 简介
  • 1 项目架构
  • 2 项目的主要过程
    • 2.1 数据清洗、预处理
    • 2.2 分桶
    • 2.3 训练
  • 3 项目的整体结构
  • 4 重要的API
    • 4.1 LSTM cells部分:
    • 4.2 损失函数:
    • 4.3 搭建seq2seq框架:
    • 4.4 测试部分:
    • 4.5 评价NLP测试效果:
    • 4.6 梯度截断,防止梯度爆炸
    • 4.7 模型保存
  • 5 重点和难点
    • 5.1 函数
    • 5.2 变量
  • 6 相关参数
  • 7 桶机制
    • 7.1 处理数据集
    • 7.2 词向量处理seq2seq
    • 7.3 处理问答及答案权重
    • 7.4 训练&保存模型
    • 7.5 载入模型&测试
  • 8 最后

0 简介

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的中文对话问答机器人

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 项目架构

整个项目分为 数据清洗 和 建立模型两个部分。

(1)主要定义了seq2seq这样一个模型。
首先是一个构造函数,在构造函数中定义了这个模型的参数。
以及构成seq2seq的基本单元的LSTM单元是怎么构建的。

(2)接着在把这个LSTM间单元构建好之后,加入模型的损失函数。
我们这边用的损失函数叫sampled_softmax_loss,这个实际上就是我们的采样损失。做softmax的时候,我们是从这个6000多维里边找512个出来做采样。
损失函数做训练的时候需要,测试的时候不需要。训练的时候,y值是one_hot向量

(3)然后再把你定义好的整个的w[512*6000]、b[6000多维],还有我们的这个cell本身,以及我们的这个损失函数一同代到我们这个seq2seq模型里边。然后呢,这样的话就构成了我们这样一个seq2seq模型。
函数是tf.contrib.legacy_seq2seq.embedding_attention_seq2seq()

(4)最后再将我们传入的实参,也就是三个序列,经过这个桶的筛选。然后放到这个模型去训练啊,那么这个模型就会被训练好。到后面,我们可以把我们这个模型保存在model里面去。模型参数195M。做桶的目的就是节约计算资源。

2 项目的主要过程

前提是一问一答,情景对话,不是多轮对话(比较难,但是热门领域)

整个框架第一步:做语料

先拿到一个文件,命名为.conv(只要不命名那几个特殊的,word等)。输入目录是db,输出目录是bucket_dbs,不存在则新建目录。

测试的时候,先在控制台输入一句话,然后将这句话通过正反向字典Ids化,然后去桶里面找对应的回答的每一个字,然后将输出通过反向字典转化为汉字。

2.1 数据清洗、预处理

读取整个语料库,去掉E、M和空格,还原成原始文本。创建conversion.db,conversion表,两个字段。每取完1000组对话,插入依次数据库,批量提交,通过cursor.commit.

在这里插入图片描述

2.2 分桶

从总的conversion.db中分桶,指定输入目录db, 输出目录bucket_dbs.

检测文字有效性,循环遍历,依次记录问题答案,每积累到1000次,就写入数据库。

        for ask, answer in tqdm(ret, total=total):
            if is_valid(ask) and is_valid(answer):
                for i in range(len(buckets)):
                    encoder_size, decoder_size = buckets[i]
                    if len(ask) <= encoder_size and len(answer) < decoder_size:
                        word_count.update(list(ask))
                        word_count.update(list(answer))
                        wait_insert.append((encoder_size, decoder_size, ask, answer))
                        if len(wait_insert) > 10000000:
                            wait_insert = _insert(wait_insert)
                        break

将字典维度6865未,投影到100维,也就是每个字是由100维的向量组成的。后面的隐藏层的神经元的个数是512,也就是维度。

句子长度超过桶长,就截断或直接丢弃。

四个桶是在read_bucket_dbs()读取的方法中创建的,读桶文件的时候,实例化四个桶对象。

2.3 训练

先读取json字典,加上pad等四个标记。

lstm有两层,attention在解码器的第二层,因为第二层才是lstm的输出,用两层提取到的特征越好。

num_sampled=512, 分批softmax的样本量(

训练和测试差不多,测试只前向传播,不反向更新

3 项目的整体结构

s2s.py:相当于main函数,让代码运行起来
里面有train()、test()、test_bleu()和create_model()四个方法,还有FLAGS成员变量,
相当于静态成员变量 public static final string

decode_conv.py和data_utils.py:是数据处理

s2s_model.py:
里面放的是模型
里面有init()、step()、get_batch_data()和get_batch()四个方法。构造方法传入构造方法的参数,搭建S2SModel框架,然后sampled_loss()和seq2seq_f()两个方法

data_utils.py:
读取数据库中的文件,并且构造正反向字典。把语料分成四个桶,目的是节约计算资源。先转换为db\conversation.db大的桶,再分成四个小的桶。buckets
= [ (5, 15), (10, 20), (15, 25), (20, 30)]
比如buckets[1]指的就是(10, 20),buckets[1][0]指的就是10。
bucket_id指的就是0,1,2,3

dictionary.json:
是所有数字、字母、标点符号、汉字的字典,加上生僻字,以及PAD、EOS、GO、UNK 共6865维度,输入的时候会进行词嵌入word
embedding成512维,输出时,再转化为6865维。

model:
文件夹下装的是训练好的模型。
也就是model3.data-00000-of-00001,这个里面装的就是模型的参数
执行model.saver.restore(sess, os.path.join(FLAGS.model_dir,
FLAGS.model_name))的时候,才是加载目录本地的保存的模型参数的过程,上面建立的模型是个架子,
model = create_model(sess, True),这里加载模型比较耗时,时间复杂度最高

dgk_shooter_min.conv:
是语料,形如: E
M 畹/华/吾/侄/
M 你/接/到/这/封/信/的/时/候/
decode_conv.py: 对语料数据进行预处理
config.json:是配置文件,自动生成的

4 重要的API

4.1 LSTM cells部分:

    cell = tf.contrib.rnn.BasicLSTMCell(size)
    cell = tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=dropout)
    cell = tf.contrib.rnn.MultiRNNCell([cell] * num_layers)
    对上一行的cell去做Dropout的,在外面裹一层DropoutWrapper

构建双层lstm网络,只是一个双层的lstm,不是双层的seq2seq

4.2 损失函数:

tf.nn.sampled_softmax_loss( weights=local_w_t,
b labels=labels, #真实序列值,每次一个
inputs=loiases=local_b,
cal_inputs, #预测出来的值,y^,每次一个
num_sampled=num_samples, #512
num_classes=self.target_vocab_size # 原始字典维度6865)

4.3 搭建seq2seq框架:

  

    tf.contrib.legacy_seq2seq.embedding_attention_seq2seq(
    encoder_inputs, # tensor of input seq 30
    decoder_inputs, # tensor of decoder seq 30
    tmp_cell, #自定义的cell,可以是GRU/LSTM, 设置multilayer等
    num_encoder_symbols=source_vocab_size,# 编码阶段字典的维度6865

                num_decoder_symbols=target_vocab_size, # 解码阶段字典的维度 6865
                embedding_size=size, # embedding 维度,512
                num_heads=20, #选20个也可以,精确度会高点,num_heads就是attention机制,选一个就是一个head去连,5个就是5个头去连
                output_projection=output_projection,# 输出层。不设定的话输出维数可能很大(取决于词表大小),设定的话投影到一个低维向量
                feed_previous=do_decode,# 是否执行的EOS,是否允许输入中间c
                dtype=dtype
            )


4.4 测试部分:

self.outputs, self.losses = tf.contrib.legacy_seq2seq.model_with_buckets(
self.encoder_inputs,
self.decoder_inputs,
targets,
self.decoder_weights,
buckets,
lambda x, y: seq2seq_f(x, y, True),
softmax_loss_function=softmax_loss_function
)

4.5 评价NLP测试效果:

在nltk包里,有个接口叫bleu,可以评估测试结果,NITK是个框架

from nltk.translate.bleu_score import sentence_bleu
score = sentence_bleu(
references,#y值
list(ret),#y^
weights=(1.0,)#权重为1
)

4.6 梯度截断,防止梯度爆炸

clipped_gradients, norm = tf.clip_by_global_norm(gradients,max_gradient_norm)
tf.clip_by_global_norm(t_list, clip_norm, use_norm=None, name=None)

通过权重梯度的总和的比率来截取多个张量的值。t_list是梯度张量, clip_norm是截取的比率,这个函数返回截取过的梯度张量和一个所有张量的全局范数

4.7 模型保存

tf.train.Saver(tf.global_variables(), write_version=tf.train.SaverDef.V2)

5 重点和难点

5.1 函数

def get_batch_data(self, bucket_dbs, bucket_id):
def get_batch(self, bucket_dbs, bucket_id, data):
def step(self,session,encoder_inputs,decoder_inputs,decoder_weights,bucket_id):

5.2 变量

batch_encoder_inputs, batch_decoder_inputs, batch_weights = [], [], []

6 相关参数



     model = s2s_model.S2SModel(
            data_utils.dim,  # 6865,编码器输入的语料长度
            data_utils.dim,  # 6865,解码器输出的语料长度
            buckets,  # buckets就是那四个桶,data_utils.buckets,直接在data_utils写的一个变量,就能直接被点出来
            FLAGS.size, # 隐层神经元的个数512
            FLAGS.dropout, # 隐层dropout率,dropout不是lstm中的,lstm的几个门里面不需要dropout,没有那么复杂。是隐层的dropout
            FLAGS.num_layers, # lstm的层数,这里写的是2
            FLAGS.max_gradient_norm, # 5,截断梯度,防止梯度爆炸
            FLAGS.batch_size,  # 64,等下要重新赋值,预测就是1,训练就是64
            FLAGS.learning_rate,    # 0.003
            FLAGS.num_samples,  # 512,用作负采样
            forward_only, #只传一次
            dtype
        )


    {
        "__author__": "qhduan@memect.co",
        "buckets": [
            [5, 15],
            [10, 20],
            [20, 30],
            [40, 50]
        ],
        "size": 512,
        /*s2s lstm单元出来之后的,连的隐层的number unit是512*/
        "depth": 4,
        "dropout": 0.8,
        "batch_size": 512,
        /*每次往里面放多少组对话对,这个是比较灵活的。
        如果找一句话之间的相关性,batch_size就是这句话里面的字有多少个,
        如果要找上下文之间的对话,batch_size就是多少组对话*/
        "random_state": 0,
        "learning_rate": 0.0003,
        /*总共循环20*/
        "epoch": 20,
        "train_device": "/gpu:0",
        "test_device": "/cpu:0"
    }

7 桶机制

7.1 处理数据集

语料库长度桶结构
(5, 10): 5问题长度,10回答长度
每个桶中对话数量,一问一答为一次完整对话

Analysis
(1) 设定4个桶结构,即将问答分成4个部分,每个同种存放对应的问答数据集[87, 69, 36,
8]四个桶中分别有87组对话,69组对话,36组对话,8组对话;
(2) 训练词数据集符合桶长度则输入对应值,不符合桶长度,则为空;
(3) 对话数量占比:[0.435, 0.78, 0.96, 1.0];

7.2 词向量处理seq2seq

获取问答及答案权重

参数:

  • data: 词向量列表,如[[[4,4],[5,6,8]]]
  • bucket_id: 桶编号,值取自桶对话占比

步骤:

  • 问题和答案的数据量:桶的话数buckets = [(5, 10), (10, 15), (20, 25), (40, 50)]
  • 生成问题和答案的存储器
  • 从问答数据集中随机选取问答
  • 问题末尾添加PAD_ID并反向排序
  • 答案添加GO_ID和PAD_ID
  • 问题,答案,权重批量数据
  • 批量问题
  • 批量答案
  • 答案权重即Attention机制
  • 若答案为PAD则权重设置为0,因为是添加的ID,其他的设置为1

Analysis

  • (1) 对问题和答案的向量重新整理,符合桶尺寸则保持对话尺寸,若不符合桶设定尺寸,则进行填充处理,
    问题使用PAD_ID填充,答案使用GO_ID和PAD_ID填充;

  • (2) 对问题和答案向量填充整理后,使用Attention机制,对答案进行权重分配,答案中的PAD_ID权重为0,其他对应的为1;

  • (3) get_batch()处理词向量;返回问题、答案、答案权重数据;
    返回结果如上结果:encoder_inputs, decoder_inputs, answer_weights.

7.3 处理问答及答案权重

参数:
  session: tensorflow 会话.
  encoder_inputs: 问题向量列表
  decoder_inputs: 回答向量列表
  answer_weights: 答案权重列表
  bucket_id: 桶编号which bucket of the model to use.
  forward_only: 前向或反向运算标志位
返回:
    一个由梯度范数组成的三重范数(如果不使用反向传播,则为无)。
 平均困惑度和输出

Analysis

  • (1) 根据输入的问答向量列表,分配语料桶,处理问答向量列表,并生成新的输入字典(dict), input_feed = {};

  • (2) 输出字典(dict), ouput_feed = {},根据是否使用反向传播获得参数,使用反向传播,
    output_feed存储更新的梯度范数,损失,不使用反向传播,则只存储损失;

  • (3) 最终的输出为分两种情况,使用反向传播,返回梯度范数,损失,如反向传播不使用反向传播,
    返回损失和输出的向量(用于加载模型,测试效果),如前向传播;

7.4 训练&保存模型

步骤:

  • 检查是否有已存在的训练模型

  • 有模型则获取模型轮数,接着训练

  • 没有模型则从开始训练

  • 一直训练,每过一段时间保存一次模型

  • 如果模型没有得到提升,减小learning rate

  • 保存模型

  • 使用测试数据评估模型

    global step: 500, learning rate: 0.5, loss: 2.574068747580052
    bucket id: 0, eval ppx: 14176.588030763274
    bucket id: 1, eval ppx: 3650.0026667220773
    bucket id: 2, eval ppx: 4458.454110999805
    bucket id: 3, eval ppx: 5290.083583183104
    

7.5 载入模型&测试

(1) 该聊天机器人使用bucket桶结构,即指定问答数据的长度,匹配符合的桶,在桶中进行存取数据;
(2) 该seq2seq模型使用Tensorflow时,未能建立独立标识的图结构,在进行后台封装过程中出现图为空的现象;

从main函数进入test()方法。先去内存中加载训练好的模型model,这部分最耗时,改batch_size为1,传入相关的参数。
    开始输入一个句子,并将它读进来,读进来之后,按照桶将句子分,按照模型输出,然后去查字典。
    接着在循环中输入上句话,找对应的桶。然后拿到的下句话的每个字,找概率最大的那个字的index的id输出。
        get_batch_data(),获取data [('天气\n', '')],也就是问答对,但是现在只有问,没有答
        get_batch()获取encoder_inputs=1*10,decoder_inputs=1*20 decoder_weights=1*20
        step()获取预测值output_logits,

在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/467760.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C语言】守护进程(daemon)的输出到一个文本文件

一、常用的守护进程函数 void daemonize () {//deamonizepid_t pid fork();if( pid > 0 ){ //parent exitexit(0);}//child continuesetsid();chdir("/");close(0);open("/dev/null", O_RDWR);//no env debugif(!getenv("debug")){cl…

3.18数据结构

一、数据结构----->用来组织存储数据 一组用来保存一种或多种特定关系的数据的集合&#xff08;组织和存储数据&#xff09; 程序 数据结构 算法 MVC&#xff1a;软件设计架构 M&#xff1a;数据的管理&#xff08;数据结构&#xff09; V&#xff1a;视图&#xff0c…

​C语言-memcmp(内存块的比较)

memcmp&#xff08;内存块的比较&#xff09; 语法 memcmp函数是C语言标准库中的一个函数&#xff0c;用于比较两个内存块的内容是否相等。它定义在<string.h>头文件中。memcmp函数在比较两个字符串或者任何内存数据时非常有用&#xff0c;它不会检查字符串的长度&…

Godot 学习笔记(3):IOC容器注入,以NlogServices为例

文章目录 前言环境注意事项Ioc注入文件夹设置Service服务搭建Nlog.configNlogService配置ButtonTest1Service控制反转Program主入口ButtonTest1从Ioc中获取服务 输出生命周期问题 总结 前言 Godot.Net中使用IOC之后&#xff0c;Godot的代码将会被极大的解耦。这里不不展开说明…

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之二 素描画风格效果

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之二 素描画风格效果 目录 Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之二 素描画风格效果 一、简单介绍 二、素描画风格效果实现原理 三、案例简单实现步骤 一、简单介绍 Python是一种跨…

MYSQL日志 redo_log更新流程 bin_log以及bin_log数据恢复

Redo_log写入策略 Redo log的Innodb_flush_log_at_trx_commit:: 这个参数有三个取值 取值为0&#xff1a;每次事务提交时&#xff0c;只是把redo_log留在 redo log buffer中&#xff0c;宕机会丢失数据&#xff1b; 取值为1&#xff08;默认值&#xff09;&#xff1a;每次事…

Zookeeper(2)常用命令,ACL权限

文章目录 前言一、zk节点和节点类型节点类型 二、常用命令1.客户端连接2.常用命令help 帮助命令创建节点getsetdeletedeleteall pathstat查看节点的状态setquota增加配额listquota /frame 查看配额delquota删除配额 三、ACL权限控制&#xff1a;1、ZooKeeper权限特性&#xff1…

从单机到分布式微服务,大文件校验上传的通用解决方案

一、先说结论 本文将结合我的工作实战经历&#xff0c;总结和提炼一种从单体架构到分布式微服务都适用的一种文件上传和校验的通用解决方案&#xff0c;形成一个完整的方法论。本文主要解决手段包括多线程、设计模式、分而治之、MapReduce等&#xff0c;虽然文中使用的编程语言…

【开发】SpringBoot 整合 Redis

目录 前言 1. Redis 的下载及安装 1.1 Redis 的下载 1.2 安装 Redis 1.3 启动 Redis 2. 创建 SpringBoot 项目整合 Redis 2.1 环境要求 2.2 SpringBoot项目构建 2.2.1 方式一 2.2.2 方式二 2.3 在 pom.xml 文件中导入依赖坐标 2.4 在 application.properties 中加…

通过docker容器安装zabbix6.4.12图文详解(监控服务器docker容器)

一、相关环境及镜像 环境&#xff1a;ubuntu 22.04&#xff0c;zabbix-server6.4&#xff0c;mysql8.0 前提&#xff1a; 1&#xff09;先安装docker环境 2&#xff09;下载相关镜像 docker pull mysql:8.0 docker pull zabbix/zabbix-java-gateway:alpine-6.4-latest docker …

25考研|北大软微会「爆炸」吗?

软微不是已经爆炸了吗&#xff1f; 大家去看看他的录取平均分就知道了&#xff0c;没有实力千万别碰&#xff0c;现在考软微已经不存在捡漏之说。 110408的复试线已经划到了465分&#xff0c;这个人真的不低了&#xff0c;因为有数学一和408两个比较难的专业课&#xff0c;复…

从零开始学习在VUE3中使用canvas(三):font(字体)

一、简介 我们可以使用font在canvas中绘制文字&#xff0c;方式如下: const ctx canvas.getContext("2d"); // 绘制文字 ctx.font "24px 黑体, 宋体"; //字体大小 首选字体 备选字体 ctx.fillText("这里是显示的字的内容", 100, 50); //文字…

力扣106---从中序和后序序列构造二叉树

题目描述&#xff1a; 给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 示例 1: 输入&#xff1a;inorder [9,3,15,20,7], postorder [9,15,7,20…

Django HTML模版

一个网站的基本框架&#xff08;如页面布局、导航栏、页脚栏等&#xff09;往往是相同的。可以把这个基本框架做成一个模版&#xff0c;其它正式的HTML页面可以直接套用这个模版&#xff0c;可以大减少各HTML文件的代码量。 语法&#xff08;模版文件中&#xff09;&#xff1…

蓝桥杯练习题——健身大调查

在浏览器中预览 index.html 页面效果如下&#xff1a; 目标 完成 js/index.js 中的 formSubmit 函数&#xff0c;用户填写表单信息后&#xff0c;点击蓝色提交按钮&#xff0c;表单项隐藏&#xff0c;页面显示用户提交的表单信息&#xff08;在 id 为 result 的元素显示&#…

python统计分析——单样本分布形状和概率密度

参考资料&#xff1a;python统计分析【托马斯】 一、单样本分布的形状参数 在scipy.stats中&#xff0c;连续分布函数的特征是他们的位置和尺度。举两个例子&#xff1a;对于正态分布&#xff0c;&#xff08;位置/形状&#xff09;是由分布的&#xff08;均值/标准差&#xf…

计算地球圆盘负荷产生的位移

1.研究背景 计算受表面载荷影响的弹性体变形问题有着悠久的历史&#xff0c;涉及到许多著名的数学家和物理学家&#xff08;Boussinesq 1885&#xff1b;Lamb 1901&#xff1b;Love 1911&#xff0c;1929&#xff1b;Shida 1912&#xff1b;Terazawa 1916&#xff1b;Munk &…

B003-springcloud alibaba 服务治理 nacos discovery ribbon feign

目录 服务治理服务治理介绍什么是服务治理相关方案 nacos实战入门搭建nacos环境安装nacos启动nacos访问nacos 将商品微服务注册进nacos将订单微服务注册进nacos订单服务通过nacos调用商品服务 实现服务调用的负载均衡什么是负载均衡代码实现负载均衡增加一个服务提供者自定义实…

HTML5语义化元素

在HTML5之前&#xff0c;网站的分布层级有哪些呢&#xff1f; nav&#xff0c;header&#xff0c;main&#xff0c;footer 这样做有一个弊端 我们往往过多的使用div&#xff0c;通过ID或class来区分元素 对于浏览器来说这些元素不够语义化 对于我来说搜索引擎来说&#xff0c;不…

鸿蒙Harmony应用开发—ArkTS声明式开发(绘制组件:Line)

直线绘制组件。 说明&#xff1a; 该组件从API Version 7开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 子组件 无 接口 Line(value?: {width?: string | number, height?: string | number}) 从API version 9开始&#xff0c;该接…