C++进阶之路---手撕“红黑树”

顾得泉:个人主页

个人专栏:《Linux操作系统》 《C++从入门到精通》  《LeedCode刷题》

键盘敲烂,年薪百万!


一、红黑树的概念与性质

1.概念

       红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。

2.性质

       1.每个结点不是红色就是黑色
       2.根节点是黑色的
       3.如果一个节点是红色的,则它的两个孩子结点是黑色的
       4.对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点
       5.每个叶子结点都是黑色的(此处的叶子结点指的是空结点)


二、红黑树结构

       为了后续实现关联式容器简单,红黑树的实现中增加一个头结点,因为跟节点必须为黑色,为了与根节点进行区分,将头结点给成黑色,并且让头结点的 pParent 域指向红黑树的根节点,pLeft域指向红黑树中最小的节点,_pRight域指向红黑树中最大的节点,如下:


三、红黑树的相关实现

1. 红黑树节点的定义

       想要实现一颗红黑树 ,首先我们得有树的节点,而树的节点中我们需要存:该节点的父节点、该节点的右孩子、该节点的左孩子、树节点的颜色以及数据类型;代码如下:

enum COLOUR
{
	RED,
	BLACK
};

template<class K, class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _parent;
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	COLOUR _col;
	pair<K, V> _kv;

	RBTreeNode(const pair<K, V>& kv)
		:_parent(nullptr)
		, _left(nullptr)
		, _right(nullptr)
		, _kv(kv)
		, _col(RED)
	{}
};

       这里在节点的定义中,要将节点的默认颜色给成红色,这个需仔细品味。

2. 红黑树的定义

红黑树的定义如下:

template<class K, class V>
class RBTree
{
	typedef RBTreeNode<K, V> Node;

private:
	Node* _root = nullptr;
};

3. 红黑树的插入

       因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:

       约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

情况一

       cur为红,p为红,g为黑,u存在且为红

       解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。

情况二

       cur为红,p为红,g为黑,u不存在/u存在且为黑

解决方式:

       p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反,
       p为g的右孩子,cur为p的右孩子,则进行左单旋转
       p、g变色–p变黑,g变红

情况三

       cur为红,p为红,g为黑,u不存在/u存在且为黑

解决方式:

       p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;相反,
       p为g的右孩子,cur为p的左孩子,则针对p做右单旋转
       则转换成了情况2

4.代码实现

template<class K, class V>
class RBTree
{
	typedef RBTreeNode<K, V> Node;
public:
	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}
		// 找到插入位置
		Node* cur = _root, * parent = nullptr;
		while (cur)
		{
			if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(kv);
		if (parent->_kv.first > cur->_kv.first)
		{
			parent->_left = cur;
		}
		else
		{
			parent->_right = cur;
		}
		cur->_parent = parent;

		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;

			//     g
			//   p   u
			// c
			if (grandfather->_left == parent)
			{
				Node* uncle = grandfather->_right;

				// 情况1、uncle 存在且为红
				// 不需要旋转
				if (uncle && uncle->_col == RED)
				{
					// 变色	
					parent->_col = BLACK;
					uncle->_col = BLACK;

					grandfather->_col = RED;

					// 继续往上更新处理
					cur = grandfather;
					parent = cur->_parent;
				}
				else
				{
					// 情况2.1
					// 单旋
					//     g
					//   p
					// c
					if (cur == parent->_left)
					{
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					// 情况3.1
					// 双旋
					//     g
					//   p
					//     c
					else
					{
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
			// grandfather->_right == parent
			//     g
			//   u   p
			//         c
			else
			{
				Node* uncle = grandfather->_left;

				// uncle 存在且为红
				// 不需要旋转
				if (uncle && uncle->_col == RED)
				{
					// 变色
					parent->_col = BLACK;
					uncle->_col = BLACK;

					grandfather->_col = RED;

					// 继续往上处理
					cur = grandfather;
					parent = cur->_parent;
				}
				// uncle 存在且为黑 或者 uncle 不存在
				else
				{
					// 情况2.2
					// 单旋
					//     g
					//   u   p 
					//         c
					if (cur == parent->_right)
					{
						RotateL(grandfather);

						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					// 情况3.2
					// 双旋
					//     g
					//   u   p 
					//     c
					else
					{
						RotateR(parent);
						RotateL(grandfather);

						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
		}
		// 最后保证根节点是黑色的
		_root->_col = BLACK;
		return true;
	}
	// 判断中序遍历是否为有序序列
	void Inorder()
	{
		_Inorder(_root);
		cout << endl;
	}
	// 判断是否平衡
	bool IsBalance()
	{
		if (_root == nullptr)
			return true;

		if (_root->_col == RED)
			return false;

		// 先统计一条路径的黑色节点,与其它路径的比较
		int refVal = 0;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_col == BLACK)
			{
				refVal++;
			}
			cur = cur->_left;
		}
		int blacknum = 0;
		return Check(_root, blacknum, refVal);
	}
	// 获取树的高度
	int Height()
	{
		return _Height(_root);
	}
	// 获取树的节点数
	size_t Size()
	{
		return _Size(_root);
	}	
	// 查找
	Node* Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < key)
			{
				cur = cur->_right;
			}
			else if (cur->_kv.first > key)
			{
				cur = cur->_left;
			}
			else
			{
				return cur;
			}
		}
		return NULL;
	}
private:
	// 获取树的节点个数
	size_t _Size(Node* root)
	{
		if (root == NULL)
			return 0;

		return _Size(root->_left)
			+ _Size(root->_right) + 1;
	}
	// 获取树的高度
	int _Height(Node* root)
	{
		if (root == nullptr)
			return 0;

		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);

		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}
	
	// 检查是否符合红黑树规则
	bool Check(Node* root, int blacknum, int refVal)
	{
		if (root == nullptr)
		{
			if (blacknum != refVal)
			{
				cout << "存在黑色节点数量不相等的路径" << endl;
				return false;
			}
			return true;
		}

		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << "有连续的红色节点" << endl;
			return false;
		}

		if (root->_col == BLACK)
		{
			blacknum++;
		}

		return Check(root->_left, blacknum, refVal)
			&& Check(root->_right, blacknum, refVal);
	}
	
	// 按中序遍历打印树的节点
	void _Inorder(Node* root)
	{
		if (root == nullptr)
			return;

		_Inorder(root->_left);
		cout << root->_kv.first << " ";
		_Inorder(root->_right);
	}

	// 左单旋
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right, * subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;
		subR->_left = parent;

		Node* parentParent = parent->_parent;
		parent->_parent = subR;
		// 如果 parent 是根节点,就直接更新 subR 为根节点,并将 subR 的_parent指向空
		if (_root == parent)
		{
			_root = subR;
			subR->_parent = nullptr;
		}

		// 否则,先判断 parent 是 parentParent 的右还是左,再将parentParent的左或者右连接subR
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}
			subR->_parent = parentParent;
		}
	}

	// 右单旋
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left, * subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;
		subL->_right = parent;

		Node* parentParent = parent->_parent;
		parent->_parent = subL;

		if (_root == parent)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}
			subL->_parent = parentParent;
		}
	}
private:
	Node* _root = nullptr;
};

四、红黑树与AVL树的比较     

       红黑树和AVL树都是自平衡二叉查找树,它们都能在插入和删除操作后通过旋转来维持树的平衡,保证查找、插入和删除操作的时间复杂度大致为( O(\log n) )。然而,它们在实现方式和具体性能上存在一些差异:

平衡性:

       红黑树通过确保从根节点到叶子的最长可能路径不会超过最短可能路径的两倍来保持平衡,即它允许一定程度的不平衡。

       AVL树则更加严格,它要求任何从根节点到叶子的路径的长度最多只相差1,因此它比红黑树更接近于完全平衡。

旋转操作:

       红黑树通常需要进行更多的旋转以维护其性质(每次插入或删除后都可能需要进行多达三次旋转),但它不需要维护额外的平衡因子信息。

       AVL树在每个节点上存储高度信息(或平衡因子),这使得它能够进行更精细的平衡操作,通常在一次插入或删除后只进行常数次旋转

空间开销:

       红黑树不需要存储额外的高度或平衡因子信息,因此它的空间效率略高。

       AVL树的每个节点都需要存储高度信息,这增加了少量的内存开销。

应用场景:

       红黑树由于其简单性和对平衡的宽松要求,在实际应用中非常流行,特别是在实现标准库中的关联容器如map和set等。

       AVL树通常在需要频繁进行查找操作,而插入和删除操作相对较少的情况下使用,因为它的高度总是最小化的,这可以最大化查找效率。


结语:C++关于如何实现红黑树的分享到这里就结束了,希望本篇文章的分享会对大家的学习带来些许帮助,如果大家有什么问题,欢迎大家在评论区留言~~~ 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/467631.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

大数据开发-数据仓库简介

文章目录 什么是数据仓库数据仓库基础知识数据仓库的建模方式数据仓库分层数据仓库的命名规范典型数仓系统架构 什么是数据仓库 数据仓库(Data Warehouse)是一个面向主题的、集成的、稳定的且随时间变化的数据集合&#xff0c;用于支持管理人员的决策 面向主题&#xff1a;类…

怎么做好独立站的SEO优化

随着全球贸易的蓬勃发展&#xff0c;越来越多的企业开始关注外贸市场&#xff0c;并将目光投向了外贸网站。然而&#xff0c;在竞争激烈的外贸市场中&#xff0c;如何写出吸引人的文章&#xff0c;以及如何优化网站以在搜索引擎中脱颖而出&#xff0c;成为了外贸独立网站必须面…

前端 -- 基础 表单标签 -- 表单域

表单域 # 表单域是一个包含 表单元素 的区域 在 HTML 标签中&#xff0c; <form> 标签 用于定义表单域&#xff0c; 以实现用户信息的收集和传递 简单通俗讲&#xff0c; 就是 <form> 会把它范围内的表单元素信息提交给后台&#xff08;服务器) 对于上面讲…

外贸网站文章批量生成器

随着全球贸易的不断发展&#xff0c;越来越多的企业开始关注外贸市场&#xff0c;而拥有高质量的内容是吸引潜在客户的关键之一。然而&#xff0c;为外贸网站生产大量优质的文章内容可能是一项耗时且繁琐的任务。因此&#xff0c;外贸网站文章批量生成软件成为了解决这一难题的…

MATLAB教程

目录 前言一、MATLAB基本操作1.1 界面简介1.2 搜索路径1.3 交互式命令操作1.4 帮助系统 二、MATLAB语言基础2.1 数据类型2.2 MATLAB运算2.2.1 算数运算2.2.2 关系运算2.2.3 逻辑运算 2.3 常用内部函数2.4 结构数据与单元数据 三、MATLAB程序设计3.1 M文件3.2 函数文件3.3 程序控…

1688商品详情API接口采集商品上货

阿里巴巴1688平台并没有直接公开商品详情API接口供普通用户或开发者进行商品采集和上货。1688平台主要服务于批发和采购业务&#xff0c;其API服务通常面向的是有深度合作关系的商家或开发者&#xff0c;且需要经过申请和审核流程。 请求示例&#xff0c;API接口接入Anzexi58 …

【重温设计模式】观察者模式及其Java示例

观察者模式的概念和原理 在编程世界中&#xff0c;设计模式作为一种解决问题的策略&#xff0c;它的存在就如同人类语言中的成语&#xff0c;是一种经过时间考验的有效解决方案。 观察者模式就是其中一种重要的设计模式&#xff0c;它在很多场景中都有着广泛的应用。那么&…

【开发】Redis 的理解与数据存储格式

目录 相关传送门 1. NOSQL和关系型数据库比较 2. 主流的NOSQL产品 3. Redis的理解 4. redis数据存储格式 4.1 String 4.2 Hash 4.3 List 4.4 Set 4.5. sorted_set 注&#xff1a;手机端浏览本文章可能会出现 “目录”无法有效展示的情况&#xff0c;请谅解&#xf…

旅游行业分析及媒体邀约资源汇总

传媒如春雨&#xff0c;润物细无声&#xff0c;大家好&#xff0c;我是51媒体网胡老师。 酒店旅游行业分析及媒体邀约资源汇总是两个相对独立但又相互关联的领域。下面将分别对这两个方面进行概述。 酒店旅游行业分析 1. 市场概况 市场规模&#xff1a;评估市场的总价值、增长…

云原生(四)、Docker-Compose

Docker-Compose Docker Compose 是一个用于定义和运行多容器 Docker 应用程序的工具。它使用一个简单的 YAML 文件来配置应用程序的服务、网络和卷&#xff0c;从而使得在不同环境中轻松部署应用程序变得更加简单和可靠。 Docker Compose 主要由以下几个核心组件组成&#xf…

【SQL】1341. 电影评分(分组求解+合并union all;order by 多字段排序)

前述 知识点回顾&#xff1a;union all和union的区别 Union&#xff1a;对两个结果集进行并集操作&#xff0c;不包括重复行&#xff0c;同时进行默认规则的排序&#xff1b;Union All&#xff1a;对两个结果集进行并集操作&#xff0c;包括重复行&#xff0c;不进行排序&…

主机与windows虚拟机远程桌面实现方法

目录 一、虚拟机相关配置1. 配置虚拟机网络2. 打开虚拟机远程桌面功能3. 配置虚拟机用户与分组 二、主机相关配置 当无法通过共享文件夹实现主机与windows虚拟机文件共享时&#xff0c;可以通过主机与虚拟机远程桌面的方法实现文件的共享传输。本文主要介绍主机与虚拟机远程桌面…

Django 应用的路由访问

项目url 添加应用访问路径 from django.contrib import admin from django.urls import path, include from app1 import viewsurlpatterns [path(admin/, admin.site.urls),path(app1/, include(app1.urls)), # 在主项目添加应用的所有路由路径 ] 就可以访问app1应用下的ur…

【Python】第十二章_外星人入侵_武装飞船

目录 项目概述&#xff1a; 1 项目需求分析 2 安装Pygame 3 开始游戏项目 3.1 创建Pygame窗口以及响应用户输入 3.2 设置背景色 3.3 创建设置类 4 添加飞船图像 4.1 创建Ship 类 4.2 在屏幕上绘制飞船 5 重构&#xff1a; 模块game_functions 5.1 函数check_even…

osgEarth学习笔记2-第一个Osg QT程序

原文链接 上个帖子介绍了osgEarth开发环境的安装。本帖介绍我的第一个Osg QT程序。 下载 https://github.com/openscenegraph/osgQt 解压&#xff0c;建立build目录。 使用Cmake-GUI Configure 根据需要选择win32或者x64&#xff0c;这里我使用win32. 可以看到include和lib路…

注册个人小程序

访问地址 https://mp.weixin.qq.com/ 立即注册 选择小程序 注册 填写信息 登录邮箱 访问邮箱的链接激活账号 选择个人&#xff0c;填写信息 注册完成&#xff0c;即可登录进入填写信息

数通-OSPF域间路由防环机制

1类LSA&#xff1a;用来描述路由器自身直连接口链路状态信息的&#xff08;也就是路由器连了什么&#xff09;&#xff1b; 2类LSA&#xff1a;用来描述伪节点的信息&#xff08;2类LSA不仅描述了拓扑信息&#xff0c;同时也描述了叶子信息&#xff09;&#xff1b; 3类LSA&a…

后端工程师快速使用axios

文章目录 01.AJAX 概念和 axios 使用模板目标讲解代码解析案例前端后端结果截图 02.URL 查询参数模板目标讲解案例前端后端结果截图 03.常用请求方法和数据提交模板目标讲解案例前端后端结果截图 04.axios 错误处理模板目标讲解案例前端后端结果截图 01.AJAX 概念和 axios 使用…

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之一 哈哈镜效果

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之一 哈哈镜效果 目录 Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之一 哈哈镜效果 一、简单介绍 二、简单哈哈镜实现的原理 1、图像拉伸放大 2、图像缩小 三、哈哈镜 拉伸放大 代码实现 …

uniapp可视范围高度 - 用户屏幕可操作的屏幕高度 - 适用于APP、H5@公众号、纯H5@Chrome

可视范围高度 let heightPx uni.getWindowInfo().windowHeight uni.getWindowInfo().windowTop 官方手册 uni.getWindowInfo() | uni-app官网uni-app,uniCloud,serverless,uni.getWindowInfo()https://uniapp.dcloud.net.cn/api/system/getWindowInfo.html 实测数据 uni.ge…