注意:本文引用自专业人工智能社区Venus AI
更多AI知识请参考原站 ([www.aideeplearning.cn])
数据集加载与可视化
from sklearn.datasets import fetch_lfw_people
faces = fetch_lfw_people(min_faces_per_person=60)
# Check out sample images
import matplotlib.pyplot as plt
fig, ax = plt.subplots(3, 5)
for i, axi in enumerate(ax.flat):
axi.imshow(faces.images[i], cmap='bone')
axi.set(xticks=[], yticks=[], xlabel=faces.target_names[faces.target[i]])
使用 PCA 和 SVC 构建模型
from sklearn.svm import SVC
from sklearn.decomposition import PCA
from sklearn.pipeline import make_pipeline
pca = PCA(n_components=150, whiten=True, random_state=42)
svc = SVC(kernel='rbf', class_weight='balanced')
model = make_pipeline(pca, svc)
# train, test
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(faces['data'], faces['target'], test_size=0.2, random_state=42)
使用网格搜索 CV 查找最佳模型
from sklearn.model_selection import GridSearchCV
param_grid ={
'svc__C': [1, 5, 10, 15],
'svc__gamma': [0.0001, 0.0005, 0.001, 0.005],
}
grid = GridSearchCV(model, param_grid=param_grid, cv=5)
%time grid.fit(X_train, y_train)
{'svc__C': 1, 'svc__gamma': 0.005}
grid.best_params_
grid.best_estimator_
使用最佳模型进行预测
final_model = grid.best_estimator_
y_pred = final_model.predict(X_test)
可视化数据
fig, ax = plt.subplots(4, 6)
for i, axi in enumerate(ax.flat):
axi.imshow(X_test[i].reshape(62, 47), cmap='bone')
axi.set(xticks=[], yticks=[])
axi.set_ylabel(faces.target_names[y_pred[i]].split()[-1],
color='black' if y_pred[i] == y_test[i] # correct label
else 'red') # incorrect label
fig.suptitle('Predicted Names; Incorrected Labels in Red', size=14);
模型评估指标
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred,
target_names=faces.target_names))
precision recall f1-score support
Ariel Sharon 0.90 0.75 0.82 12
Colin Powell 0.72 0.94 0.81 51
Donald Rumsfeld 0.88 0.88 0.88 25
George W Bush 0.97 0.88 0.92 98
Gerhard Schroeder 0.88 0.71 0.79 21
Hugo Chavez 0.85 0.73 0.79 15
Junichiro Koizumi 1.00 1.00 1.00 10
Tony Blair 0.90 0.92 0.91 38
accuracy 0.87 270
macro avg 0.89 0.85 0.86 270
weighted avg 0.89 0.87 0.88 270
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
cm = cm.T
print(cm)
import seaborn as sns
sns.heatmap(data=cm,
square=True,
annot=True,
cbar=False,
xticklabels=faces.target_names,
yticklabels=faces.target_names
);
plt.xlabel('True Labels')
plt.ylabel('Predicted Labels');
项目资源下载
详情请见基于支持向量机(SVM)的人脸识别-VenusAI (aideeplearning.cn)