【深度学习模型移植】用torch普通算子组合替代torch.einsum方法

     首先不得不佩服大模型的强大之处,在算法移植过程中遇到einsum算子在ONNX中不支持,因此需要使用普通算子替代。参考TensorRT - 使用torch普通算子组合替代torch.einsum爱因斯坦求和约定算子的一般性方法。可以写出简单的替换方法,但是该方法会导致训练时还是推理都很慢,并且会消耗大量显存,造成显存溢出的问题。。因此采用提问文心一言,没想到居然真的回答正确了。当然替换需要验证,不是全对的。
1.einsum(delta, A, ‘b l d_in, d_in n -> b l d_in n’) 的替换,以下两个方法均可以

deltaA = torch.exp(einsum(delta, A, 'b l d_in, d_in n -> b l d_in n'))
deltaA = torch.exp(delta.unsqueeze(dim=3)*A.unsqueeze(dim=0).unsqueeze(dim=0))
deltaA = torch.exp(delta.unsqueeze(-1).repeat_interleave(A.shape[1], dim=-1) * A)

2.einsum(x, C[:, i, :], ‘b d_in n, b n -> b d_in’),以下两个方法均可以

    
    y = einsum(x, C[:, i, :], 'b d_in n, b n -> b d_in')
    y = (x*C[:, i, :].unsqueeze(dim=1)).sum(dim=2)
    y = torch.matmul(C[:, i, :], x.transpose(-1, -2)).squeeze(1)

3.einsum(delta, B, u, ‘b l d_in, b l n, b l d_in -> b l d_in n’),以下两个方法均可以

deltaB_u = einsum(delta, B, u, 'b l d_in, b l n, b l d_in -> b l d_in n')
deltaB_u1 = delta.unsqueeze(dim=3)*B.unsqueeze(dim=2)*u.unsqueeze(dim=3)

下述方法是提问文心一言的办法,注意需要将答案的结果和einsum的结果进行对比,采用np.testing.assert_allclose(deltaB_u.numpy(),deltaB_u1.numpy(),rtol=1e-05,atol=1e-05)和print(deltaA.equal(deltaA_manual))均可以。

import torch
import numpy as np
from einops import rearrange, repeat, einsum
# 给定的张量
delta = torch.ones([1, 3, 2])
A = torch.ones([2, 4])
deltaA = torch.exp(einsum(delta, A, 'b l d_in, d_in n -> b l d_in n'))
deltaA1 = torch.exp(delta.unsqueeze(dim=3)*A.unsqueeze(dim=0).unsqueeze(dim=0))
deltaA_manual = torch.exp(delta.unsqueeze(-1).repeat_interleave(A.shape[1], dim=-1) * A)
np.testing.assert_allclose(deltaA.numpy(),deltaA1.numpy(),rtol=1e-05,atol=1e-05)

# 扩展 delta 的维度,以便它可以与 A 进行广播(broadcast)
# 这里我们使用 unsqueeze 和 repeat_interleave 来扩展维度
delta_expanded = delta.unsqueeze(-1).repeat_interleave(A.shape[1], dim=-1)
# 执行逐元素的乘法,然后取指数
deltaA_manual = torch.exp(delta_expanded * A)

# 注意:deltaA_manual 的形状是 [1, 3, 2, 4],这与 einsum 的输出形状一致
print(deltaA.equal(deltaA_manual))
print(deltaA1.equal(deltaA_manual))

请添加图片描述
请添加图片描述
请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/464247.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C#】【SAP2000】SAP2000中批量修改指定荷载工况下所有Frame对象的温度荷载

if (build true){// 连接到正在运行的 SAP2000cOAPI mySapObject (cOAPI) System.Runtime.InteropServices.Marshal.GetActiveObject("CSI.SAP2000.API.SapObject");cSapModel mySapModel mySapObject.SapModel;// 获取所有框架单元的总数int numberFrames 0;str…

鸿蒙Harmony应用开发—ArkTS声明式开发(基础手势:Search)

搜索框组件,适用于浏览器的搜索内容输入框等应用场景。 说明: 该组件从API Version 8开始支持。后续版本如有新增内容,则采用上角标单独标记该内容的起始版本。 子组件 无 接口 Search(options?: { value?: string, placeholder?: Reso…

[论文精读]Dynamic Coarse-to-Fine Learning for Oriented Tiny Object Detection

论文网址:[2304.08876] 用于定向微小目标检测的动态粗到细学习 (arxiv.org) 论文代码:https://github.com/ChaselTsui/mmrotate-dcfl 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&…

网站安全监测:守护网络空间的坚实防线

随着互联网技术的飞速发展和广泛应用,网站已成为企业、机构和个人展示形象、提供服务、传递信息的重要平台。然而,与此同时,网站也面临着日益严重的安全威胁。黑客攻击、数据泄露、恶意软件等安全问题频发,给网站运营者带来了巨大…

FFplay使用滤镜添加字幕到现有视频显示

1.创建字幕文件4k.srt 4k.srt内容: 1 00:00:01.000 --> 00:00:30.000 日照香炉生紫烟2 00:00:31.000 --> 00:00:60.000 遥看瀑布挂前川3 00:01:01.000 --> 00:01:30.000 飞流直下三千尺4 00:01:31.000 --> 00:02:00.000 疑是银河落九天2.通过使用滤镜显示字幕在视…

ping和telnet的区别

ping是ICMP协议,只包含控制信息没有端口,用于测试两个网络主机之间网络是否畅通 telnet是TCP协议,用于查看目标主机某个端口是否开发。 总结:ping是物理计算机间的网络互通检查,telnet是应用服务间的访问连通检查&am…

GPU密集型计算性能优化的方法和技术

对GPU密集型计算进行性能优化的方法和技术多种多样。通过一些优化策略和技术需要综合考虑应用程序的具体需求、所使用的GPU硬件、以及编程模型和库的选择。通过不断地分析和调整,可以实现GPU计算性能的持续提升。以下是一些常用的优化策略和技术: 算法优…

Oracle 部署及基础使用

1. Oracle 简介 Oracle Database,又名 Oracle RDBMS,简称 Oracle Oracle系统,即是以Oracle关系数据库为数据存储和管理作为构架基础,构建出的数据库管理系统。是目前最流行的客户/服务器(client/server)或…

监视和内存观察

监视和内存观察 5.监视和内存观察5.1 监视5.2 内存 5.监视和内存观察 在调试的过程中我们,如果要观察代码执行过程中,上下文环境中的变量的值,有哪些方法呢? 这些观察的前提条件一定是开始调试后观察,比如&#xff1…

金枪鱼群优化算法TSO优化BiLSTM-ATTENTION实现风力发电功率预测(matlab)

金枪鱼群优化算法TSO优化BiLSTM-ATTENTION实现风力发电功率预测(matlab) TSO-BiLSTM-Attention金枪鱼群算法优化长短期记忆神经网络结合注意力机制的数据回归预测 Matlab语言。 金枪鱼群优化算法(Tuna Swarm Optimization,TSO)是一…

upload-labs第一关

上一篇文章中搭建好了upload-labs环境,接下来进行第一关的尝试,我也是第一次玩这个挺有意思。 1、第一关的界面是这样的先不看其他的源码,手动尝试下试试。 2、写一个简单的php一句话木马 3、直接上传,提示必须要照片格式的文…

论文阅读——BLIP

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation (1)单模态编码器,它分别对图像和文本进行编码。图像编码器用ViT,并使用附加的 [CLS] 标记来表示全局图像特征。文本…

20240314-2-字符串string

1.最长公共前缀 编写一个函数来查找字符串数组中的最长公共前缀。 如果不存在公共前缀,返回空字符串 “”。 示例 1: 输入: [“flower”,“flow”,“flight”] 输出: “fl” 示例 2: 输入: [“dog”,“racecar”,“car”] 输出: “” 解释: 输入不存在公共前缀…

面向对象编程第三式: 多态 (Java篇)

本篇会加入个人的所谓‘鱼式疯言’ ❤️❤️❤️鱼式疯言:❤️❤️❤️此疯言非彼疯言 而是理解过并总结出来通俗易懂的大白话, 小编会尽可能的在每个概念后插入鱼式疯言,帮助大家理解的. 🤭🤭🤭可能说的不是那么严谨.但小编初心是能让更多人…

brpc之ResourcePool

简介 ResourcePool用于管理资源&#xff0c;负责资源的分配以及回收 结构 BlockGroup&#xff1a;资源池中包含多个BlockGroup&#xff0c;最多65536个 Block&#xff1a;一个BlockGroup中包含多个Block&#xff0c;最多(1<<16)个&#xff1b;1个Block中包含BLOCK_NITE…

浅谈C/C++的常量const、指针和引用问题

今天我们来探讨C/C中const、指针和引用的相关问题。这些概念是编程中的重要组成部分&#xff0c;它们的正确使用对于代码的可读性和可维护性至关重要。通过深入了解const的不可变性、指针的灵活性以及引用的简洁性&#xff0c;我们能够更好地掌握编程的精髓&#xff0c;并写出更…

PLC_博图系列☞基本指令“SET_BF”置位位域

PLC_博图系列☞基本指令“SET_BF”置位位域 文章目录 PLC_博图系列☞基本指令“SET_BF”置位位域背景介绍SET_BF&#xff1a;置位位域说明类型为 PLC 数据类型、STRUCT 或 ARRAY 的位域参数示例 关键字&#xff1a; PLC、 西门子、 博图、 Siemens 、 SET_BF 背景介绍 这是…

【Algorithms 4】算法(第4版)学习笔记 19 - 6.0.4 网络流算法

文章目录 前言参考目录学习笔记1&#xff1a;介绍1.1&#xff1a;最小切分问题1.2&#xff1a;最大流问题1.3&#xff1a;小结2&#xff1a;Ford-Fulkerson 算法&#xff08;FF 算法&#xff09;2.1&#xff1a;介绍2.2&#xff1a;问题3&#xff1a;最大流量 - 最小切分定理 m…

ConsiStory:Training-Free的主体一致性生成

Overview 一、总览二、PPT详解 ConsiStory 一、总览 题目&#xff1a; Training-Free Consistent Text-to-Image Generation 机构&#xff1a;NVIDIA, Tel-Aviv University 论文&#xff1a;https://arxiv.org/pdf/2402.03286.pdf 代码&#xff1a;https://consistory-paper.g…

Github 2024-03-17 开源项目日报Top10

根据Github Trendings的统计,今日(2024-03-17统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Python项目5TypeScript项目2Rust项目1JavaScript项目1C#项目1非开发语言项目1Solidity项目1《Hello 算法》:动画图解、一键运行的数据结构与算…