目标检测——FPN与DSSD算法解读

由于FPN和DSSD网络结构比较相似,且发布时间非常相近,所以放一起解读
按时间来算FPN是先于DSSD在arxiv上发布的,FPN第一版是2016年12月9日,DSSD第一版是2017年1月23日,前后相差一个月。

YOLO系列其他文章:

  • YOLOv1通俗易懂版解读
  • SSD算法解读
  • YOLOv2算法解读
  • YOLOv3算法解读
  • YOLOv4算法解读
  • YOLOv5算法解读

文章目录

  • 1、FPN
    • 1.1 算法概述
    • 1.2 FPN细节
  • 2、DSSD
    • 2.1 算法概述
    • 2.2 DSSD细节
  • 3、FPN与DSSD对比


1、FPN

论文:Feature Pyramid Networks for Object Detection
作者:Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, Serge Belongie
链接:https://arxiv.org/abs/1612.03144

1.1 算法概述

SSD利用不同层的特征图进行不同尺寸的目标预测,又快又好。这篇文章首先也采用了这种思路:在不同深度的特征层上预测不同尺寸的目标。但是SSD为了预测小目标,就得把比较低的层拿出来预测,这样的话就很难保证有很强的语义特征,所以作者就想着,为什么不把高层的特征再传下来,补充低层的语义,这样就可以获得高分辨率、强语义的特征,有利于小目标的检测。作者通过将FPN与Faster R-CNN结合起来,AR直接提升8个点。COCO-style方式计算的AP提升2.3个点,PASCAL-style计算的AP提升3.8个点。

1.2 FPN细节

直接引入论文中的图说明现如今检测算法利用特征图做检测的方式。
在这里插入图片描述
图(a)是通过多尺度变换图片,然后对得到一系列图片提取特征形成的特征金字塔;图(b)就是利用最后一层特征图做预测的方式;图©就是单纯利用多个层级的特征做预测,SSD算法就是采用这种方式;图(d)就是本文提出的FPN,它还有一个top-to-down对多个层级进行融合的过程,并且也是多个特征层多预测。
融合的方式如下,小特征图通过双线性插值完成上采样操作与之前的大特征图相加融合形成新的大特征图。
在这里插入图片描述


2、DSSD

论文:DSSD: Deconvolutional Single Shot Detector
作者:Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi, Alexander C. Berg
链接:https://arxiv.org/abs/1701.06659

2.1 算法概述

DSSD基于SSD进行改进,将SSD的主干网络换成了提取特征能力更强的ResNet101,也像FPN一样,对SSD的多个特征进行了融合。只是DSSD在从小分辨率特征图变换到大特征图用的操作是反卷积。通过这两个改进,DSSD513在VOC2007测试集上实现了81.5%mAP,VOC2012测试集达到了80.0%mAP,在COCO测试集上是33.2%mAP。

2.2 DSSD细节

直接看DSSD和SSD对比的网络结构图
在这里插入图片描述
大体上看特征融合的方式和FPN非常像,都是一个top-to-down的过程,最后多个特征图输出预测结果。但作者设计了两个小模块,一个是Prediction Module,一个是Deconvolution Module。

  • Prediction Module
    在这里插入图片描述
    作者说加这个模块是因为MS-CNN指出提升每个子任务网络的表现可以提高准确性,所以作者为每个预测层添加一个残差块,这个有一点效果吧。通过消融实验也证明©的效果最好。作者在最后提出,加PM是为了防止梯度直接流入Res-Net主干。

  • Deconvolution Module
    在这里插入图片描述
    可以看到这个Deconvolution Module不是单纯的将小特征图经过一个反卷积操作然后和大特征图相加融合(FPN是单纯上采样然后相加融合);对于小特征图经过一个反卷积操作后,又经过一个3x3卷积操作,同样的对于大特征图还经过3x3两个卷积操作,然后才是两个特征图做元素相乘操作的融合得到新的大特征图。


3、FPN与DSSD对比

相同点:
均是改进检测算法框架的Neck特征融合增强部分,对检测小目标的性能均有比较大的提升。

不同点:
FPN是基于Faster R-CNN做的改进实验,当然FPN也是通用的,它只是单纯的将小特征图上采样扩大分辨率然后与大特征图相加融合,而DSSD是基于SSD做的改进实验,里面的Deconvolution Module也是做特征融合,也可以通用到其他主干网络,但它的融合方式比FPN更复杂一点,融合之前进行了两个卷积操作,而且是元素相乘的融合方式。其次,DSSD还改进了SSD算法的检测头。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/460297.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

单片机设计-超声波视力保护仪的设计与实现

项目介绍 技术:C语言、单片机等 本设计利用超声波技术检测眼睛与书本的距离,调整看书位置,通过光敏检测判断环境光线强度是否适合阅读,并通过定时器设定阅读时长,以此解决人们由于看书姿势的错误,阅读环境…

C/C++ Socket 获取或设置 TCP MSS 大小

通过 Socket 系统接口,链接到一个TCP服务器,那么在链接成功之后会被配置一个从本地端到目的端最佳的TCP_MSS大小。 我们通过这个特点,即可轻松的实现,链路MTU大小发现功能,在不依赖ROOT管理员权限的情况下,…

【数据结构取经之路】建堆堆排序

目录 引言 建堆的两种方法 一、向上调整建堆 二、向下调整建堆 两种建堆方式的性能比较 堆排序 堆排序的思想 堆排序的时间复杂度 堆排序的空间复杂度 堆排序代码 引言 首先,介绍一下本次的主人公——堆。堆是一种数据结构,在逻辑上是一棵二叉…

Java数据结构-优先级队列

文章目录 前言一、优先级队列1.1 概念 二、优先级队列的模拟实现2.1 堆的概念2.2 堆的存储方式2.3 堆的创建2.3.1 堆向下调整2.3.2 堆的创建2.3.3 建堆的时间复杂度 2.4 堆的插入与删除2.4.1 堆的插入2.4.2 堆的删除 2.5 用堆模拟实现优先级队列 三、常用接口介绍3.1 PriorityQ…

php 对接IronSource海外广告平台收益接口Reporting API

今天对接的是IronSource广告reporting api接口,拉取广告收益回来自己做统计。记录分享给大家 首先是文档地址,进入到Inmobi后台就能看到文档地址以及参数: 文档地址:https://developers.is.com/ironsource-mobile/air/reporting/ 在这里插入图…

5 个适用于 Windows 10 和 11 的最佳 PDF 转 Word 转换器

PDF 文件是共享文档的首选格式,但是此类文件存在一些限制,导致难以修改或编辑。因此,您可能会发现自己正在寻找一种将 PDF 文件转换为 Word 或其他可编辑格式的方法。 有许多不同的 PDF 转换器,每种转换器提供的功能略有不同。本…

代码+视频,R语言使用BOOT重抽样获取cox回归方程C-index(C指数)可信区间

bootstrap自采样目前广泛应用与统计学中,其原理很简单就是通过自身原始数据抽取一定量的样本(也就是取子集),通过对抽取的样本进行统计学分析,然后继续重新抽取样本进行分析,不断的重复这一过程N&#xff0…

还原wps纯粹的编辑功能

1.关闭稻壳模板: 1.1. 启动wps(注意不要乱击稻壳模板,点了就找不到右键菜单了) 1.2. 在稻壳模板选项卡右击:选不再默认展示 2.关闭托盘中wps云盘图标:右击云盘图标/同步与设置: 2.1.关闭云文档同步 2.2.窗口选桌面应用…

BFS 最短路径

目录 原理剖析: 1、 1926. 迷宫中离入口最近的出口 2、 433. 最小基因变化 3、 127. 单词接龙 4、 675. 为高尔夫比赛砍树 原理剖析: 为什么BFS能够解决最短路径问题? 对于无权图(边权为1)或所有边权重相等的情况,BFS是一种有…

ASP.NET Mvc+FFmpeg+Video实现视频转码

目录 首先,做了视频上传的页面: FFmpeg:视频转码 FFmpegHelper工作类: 后台控制器代码: 前端视图代码: 参考文章: 首先,做了视频上传的页面: 借鉴了这篇文章 ASP.…

【pycharm】如何将pacharm设置成中文

【pycharm】汉化教程——如何将pacharm设置成中文 1、打开pycharm 2、点击file 3、点击setting——Plugins——搜索Chinese——点击如下图图标进行下载 汉化后界面情况:

【数据结构与算法】(13):交换排序之冒泡排序和快速排序

🤡博客主页:Code_文晓 🥰本文专栏:数据结构与算法 😻欢迎关注:感谢大家的点赞评论关注,祝您学有所成! ✨✨💜💛想要学习更多数据结构与算法点击专栏链接查看&…

生成器模式(软考uml C++版)

按照软考中级软件设计师中指定的生成器模式uml图&#xff0c;可编写对应的C&#xff0b;&#xff0b;代码&#xff1a; #include<iostream> #include<vector> #include<string> using namespace std;/*创建者模式&#xff0c;又名生成器模式意图&#xff1a…

每日五道java面试题之springMVC篇(四)

目录&#xff1a; 第一题. Spring MVC怎么样设定重定向和转发的&#xff1f;第二题.Spring MVC怎么和AJAX相互调用的&#xff1f;第三题. 如何解决POST请求中文乱码问题&#xff0c;GET的又如何处理呢&#xff1f;第四题. Spring MVC的异常处理&#xff1f;第五题. 如果在拦截请…

【JWT】入门 *JWT*,并封装一个实用的 *JWT* 工具类

个人简介&#xff1a;Java领域新星创作者&#xff1b;阿里云技术博主、星级博主、专家博主&#xff1b;正在Java学习的路上摸爬滚打&#xff0c;记录学习的过程~ 个人主页&#xff1a;.29.的博客 学习社区&#xff1a;进去逛一逛~ 【JWT】入门 *JWT*&#xff0c;并封装一个实用…

SQLiteC/C++接口详细介绍之sqlite3类(八)

返回目录&#xff1a;SQLite—免费开源数据库系列文章目录 上一篇&#xff1a;SQLiteC/C接口详细介绍之sqlite3类&#xff08;七&#xff09; 下一篇&#xff1a; SQLiteC/C接口详细介绍之sqlite3类&#xff08;八&#xff09;&#xff08;暂未发表&#xff09; 24.sqlite3_cr…

网络安全msf学习1

工具&#xff1a;netcat 用途 &#xff1a;端口连接、数据提交 工具nmap 用途&#xff1a;端口扫描、服务识别、操作系统指纹识别 工具 httprint 用途&#xff1a;通过远程http指纹判断http服务类型 工具&#xff1a; tamper ie 用途&#xff1a; http数据包修改、转发工…

SpringMVC基础之工作流程

文章目录 SpringMVC 的工作流程1. 总图2. DispatcherServlet3. 必需的配置4. 加载配置文件的两个时机5. 定义控制器6. 创建 JSP 视图 SpringMVC 的工作流程 1. 总图 如上图&#xff0c;Spring MVC 程序的完整执行流程如下&#xff1a; 用户通过浏览器发送请求&#xff0c;请求…

怎样提升小程序日活?签到抽奖可行吗?

一、 日活运营策略 小程序应该是即用即走的&#xff0c;每个小程序都在用户中有自己的独特定位&#xff0c;可能是生活日常必备&#xff08;美食、团购、商城&#xff09;&#xff0c;也可能是工作办公必备&#xff08;文档、打卡、工具&#xff09;。 如果你想要让自己的小程…

sqllab第十九关通关笔记

知识点&#xff1a; 错误注入 最大长度为32位&#xff1b;如果目标长度>32时&#xff0c;需要利用截取函数进行分段读取referer注入 insert语句update语句 通过admin admin进行登录发现页面打印除了referer字段的信息 这应该是一个referer注入 首先进行测试一下 构造payl…