【算法与数据结构】深入解析二叉树(一)

请添加图片描述

文章目录

  • 📝数概念及结构
  • 🌠 树的概念
      • 🌉树的表示
      • 🌠 树在实际中的运用(表示文件系统的目录树结构)
  • 🌉二叉树概念及结构
    • 🌠概念
    • 🌉数据结构中的二叉树
    • 🌠特殊的二叉树:
    • 🌉 二叉树的性质
    • 🌠二叉树的存储结构
      • 🌉 顺序存储
      • 🌠链式存储
    • 🌉 选择题
  • 🚩总结


📝数概念及结构

🌠 树的概念

数是一种非线性的数据结构,它是由n(n>=0)个有限节点组成一个具有层次关系的集合,把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

  • 一个特殊的结点,称为根结点,根节点没有前驱结点
  • 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
  • 因此,树是递归定义的。

在这里插入图片描述
注意:树形结构中,子树之间不能有交集,否则就不是树形结构
在这里插入图片描述
树的相关概念
在这里插入图片描述

  • 节点的度:一个节点含有子树的个数称为该节点的度;如上图:A的为6
  • 叶节点或终端节点:度为0的节点称为叶节点;如上图:B、C、H、I…等节点为叶节点
  • 非终端节点或分支节点:度不为0的节点;如上图:D、E、F、G…等节点为分支节点
  • 双亲节点或父节点:若一个节点包含子节点,则这个节点称其字节点的父节点;如上图:A是B的父节点
  • 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;如上图:B是A的孩子节点
  • 兄弟节点:具有相同父节点互为兄弟节点;如图:B,C是兄弟节点
  • 树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
  • 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
  • 树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
  • 堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
  • 节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
  • 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
  • 森林:由m(m>0)棵互不相交的树的集合称为森林;

🌉树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法。

typedef int DataType;
struct Node
{
 struct Node* _firstChild1; // 第一个孩子结点
 struct Node* _pNextBrother; // 指向其下一个兄弟结点
 DataType _data; // 结点中的数据域
};

在这里插入图片描述

🌠 树在实际中的运用(表示文件系统的目录树结构)

Linux文件系统中也广泛使用树状图来表示和管理目录结构:Linux文件系统中的目录结构就是一棵树,根目录位于树的顶部,使用命令如tree、find等可以生成目录的树状图,清晰展示各目录和文件的包含关系。VFS(虚拟文件系统)层次结构也采用树形结构,不同文件系统作为树的分支,方便管理和扩展。
在这里插入图片描述

🌉二叉树概念及结构

🌠概念

一棵二叉树是结点的一个有限集合,该集合:

  1. 或者为空
  2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成
    在这里插入图片描述
    二叉树的特点:
  3. 二叉树不存在度大于2的结点
  4. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

🌉数据结构中的二叉树

注意:对于任意的二叉树都是由以下几种情况复合而成的:
在这里插入图片描述

🌠特殊的二叉树:

  1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
  2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
    在这里插入图片描述

🌉 二叉树的性质

  • 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 个结点.
  • 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是是 2^h-1(注意是这里是-1+2 ^h)
  • 对任何一棵二叉树来说,如果:N0是度为0(叶结点)的节点个数N2是度为2(分支结点)的节点个数则有:N0 + N2 = N - 1(N0(叶节点个数) + N2(分支节点个数) = 总节点数N)
  • 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h= log_2(n+1) = h (ps: 是log以2为底,n+1为对数)
  • 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有
  • 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
  • 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
  • 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

🌠二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

🌉 顺序存储

顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。
在这里插入图片描述

🌠链式存储

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程学到高阶数据结构如红黑树等会用到三叉链。

在这里插入图片描述

typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
 struct BinTreeNode* _pLeft; // 指向当前节点左孩子
 struct BinTreeNode* _pRight; // 指向当前节点右孩子
 BTDataType _data; // 当前节点值域
}
// 三叉链
struct BinaryTreeNode
{
 struct BinTreeNode* _pParent; // 指向当前节点的双亲
 struct BinTreeNode* _pLeft; // 指向当前节点左孩子
 struct BinTreeNode* _pRight; // 指向当前节点右孩子
 BTDataType _data; // 当前节点值域
}

🌉 选择题

来趁热练铁吧,冲冲冲~

1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
A 不存在这样的二叉树
B 200
C 198
D 199

解题思路:
总结点数为399个,度为2的结点数为199个,每个度为2的结点都有2个儿子,那么199个度为2的结点对应的子结点数为199*2=398,总结点数399,度为2结点对应的子结点数398,则叶子结点数为399-398=1

正确答案是B 200

2.下列数据结构中,不适合采用顺序存储结构的是( )
A 非完全二叉树
B 堆
C 队列
D 栈

顺序存储结构是指数据元素按顺序依次存储在连续的内存单元中。A 非完全二叉树:非完全二叉树采用顺序存储,会有很多空闲位置,存储效率不高。

正确答案是A

3.在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A n
B n+1
C n-1
D n/2

完全二叉树的定义: 如果设二叉树深度为h,除最后一层外,其他各层节点数达到最大个数,最后一层所有结点从左到右排列,这就是完全二叉树。对于一个具有2n个结点的完全二叉树:除最后一层外,其他各层节点数都达到最大个数,即都是满的。最后一层可能不满,但结点从左到右排列。一个满二叉树的节点数为2h-1,这里树的深度h,使得2h-1<=2n<2h+1,即h=log2(2n)=log2n,除最后一层外共有log2n层,每层节点数为2h-1,共有log2n*(2h-1)=n个节点

最后一层节点数即为叶子节点数,为2n-n=n个

正确答案是A


🚩总结

请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/457312.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深入浅出:Objective-C中使用MWFeedParser下载豆瓣RSS

摘要 本文旨在介绍如何在Objective-C中使用MWFeedParser库下载豆瓣RSS内容&#xff0c;同时展示如何通过爬虫代理IP技术和多线程提高爬虫的效率和安全性。 背景 随着信息量的激增&#xff0c;爬虫技术成为了获取和处理大量网络数据的重要手段。Objective-C作为一种成熟的编程…

软考77-上午题-【面向对象技术3-设计模式】-创建型设计模式02

一、生成器模式 1-1、意图 将一个复杂对象的构建与它的表示分离&#xff0c;使得同样的构建过程可以创建不同的表示。 1-2、结构图 Builder 为创建一个 Product 对象的各个部件指定抽象接口。ConcreteBuilder 实现 Builder 的接口以构造和装配该产品的各个部件&#xff0c;定…

IDEA如何删除git最新一次远程提交

IDEA如何删除git最新一次远程提交 选择应用 -> Git -> Show History 选择最新提交上一次提交 -> Reset Current Branch to Here… Reset 提示框选择 Hard push到远程分支 -> 选择Force Push 结果验证 &#xff08;最新分支已被删除&#xff09;

QT网络编程之实现UDP广播发送和接收

推荐一个不错的人工智能学习网站&#xff0c;通俗易懂&#xff0c;内容全面&#xff0c;作为入门科普和学习提升都不错&#xff0c;分享一下给大家&#xff1a;前言https://www.captainbed.cn/ai 一.UDP通信 1.QT中实现UDP通信主要用到了以下类&#xff1a;QUdpSocket、QHost…

AI 大模型赋能手机影像,小米14 Ultra 让真实有层次

2月22日&#xff0c;小米龙年第一场重磅发布会&#xff0c;正式发布专业影像旗舰小米14 Ultra。 此前小米发布的两代 Ultra&#xff0c;在不同维度&#xff0c;引领了移动影像行业的走向。最新的小米14 Ultra 在定义的时候&#xff0c;我们反复在思考&#xff1a;怎么才能把移动…

解决iview表格固定列横向滚动条无法拖动问题

问题描述&#xff1a; iview的table添加固定列以后&#xff0c;滚动条在固定列下面无法拖动&#xff0c;只能在滚动区域有所反应 解决办法 【写入main.js引入的全局文件时不需要::v-deep; 写入单个文件需要加::v-deep】 方法一&#xff1a;【带合计行也适用】 //解决iview表…

uniapp报错:[获取文件失败] 以下文件已被配置忽略打包上传,模拟器无法获取...

uniapp分包控制台报错&#xff1a; Error: module ‘pagesMember/address/address.js’ is not defined, require args is ‘pagesMember/address/address.js’ 以及 [获取文件失败] 以下文件已被配置忽略打包上传&#xff0c;模拟器无法获取&#xff1a; pagesMember/address/…

【开源-土拨鼠充电系统】鸿蒙 HarmonyOS 4.0+微信小程序+云平台

本人自己开发的开源项目&#xff1a;土拨鼠充电系统 ✍GitHub开源项目地址&#x1f449;&#xff1a;https://github.com/cheinlu/groundhog-charging-system ✍Gitee开源项目地址&#x1f449;&#xff1a;https://gitee.com/cheinlu/groundhog-charging-system ✨踩坑不易&am…

Helm Chart部署最简SpringBoot到K8S(AWS EKS版)

目标 这里假设&#xff0c;我们已经基本会使用k8s的kubectl命令进行部署了&#xff0c;也已经会自己打docker镜像推送到AWS ECR上面去了。而且&#xff0c;已经在云上准备好了AWS ECR镜像库和AWS EKS的k8s集群了。 这个前提上面&#xff0c;我们今天使用Helm Chart项目准备k8s…

java-ssm-jsp基于java的餐厅点餐系统的设计与实现

java-ssm-jsp基于java的餐厅点餐系统的设计与实现 获取源码——》公主号&#xff1a;计算机专业毕设大全

嵌入式方向还有希望吗?

我刚开始学习&#xff0c;也不知道我定位的是单片机工程师&#xff0c;嵌入式工程师职位的。 我只知道电子工程师&#xff0c;这个职位其实偏硬件&#xff0c;很多岗位需求是硬件设计&#xff0c;PCB设计&#xff0c;还要懂焊接、各种仪器仪表使用&#xff0c;还有些需要懂单片…

centos7磁盘管理,lvm挂载、扩容

一、centos7 磁盘挂载 默认盘符格式 centos7 默认文件格式xfscentos6 默认文件格式ext4centos5 默认文件格式ext3 1、/dev/vdb和/dev/mapper/lvm-data对比 1&#xff09;/dev/vdb /dev/vdb通常表示一个裸的块存储设备&#xff0c;比如一个硬盘或者虚拟机中的一个虚拟硬盘。…

vscode-server的搭建方法

一、配置服务器端口支持 1、开放端口&#xff1a; 2、关闭防火墙 systemctl stop firewalld.service systemctl disable firewalld.service二、配置code-server到服务器上** 1、下载code-server-4.22.0-linux-amd64.tar.gz到本地&#xff08;可下载最新的版本&#xff09;&a…

2024.3.14 C++

思维导图 封装类 用其成员函数实现&#xff08;对该类的&#xff09;数学运算符的重载&#xff08;加法&#xff09;&#xff0c;并封装一个全局函数实现&#xff08;对该类的&#xff09;数学运算符的重载&#xff08;减法&#xff09;。 #include <iostream>using nam…

[LeetCode][LCR169]招式拆解 II——巧妙利用字母的固定顺序实现查找复杂度为O(1)的哈希表

题目 LCR 169. 招式拆解 II 某套连招动作记作仅由小写字母组成的序列 arr&#xff0c;其中 arr[i] 第 i 个招式的名字。请返回第一个只出现一次的招式名称&#xff0c;如不存在请返回空格。 示例 1&#xff1a; 输入&#xff1a;arr "abbccdeff" 输出&#xff1a;a…

【学习心得】Python好库推荐——websocket-client

websocket-client 是一个在 Python 中广泛使用的库&#xff0c;用于创建 WebSocket 客户端并实现与 WebSocket 服务器的双向通信。更多的关于websocket协议介绍&#xff0c;可以看看我之前写的文章哦&#xff01; 【学习心得】websocket协议简介并与http协议对比http://t.csdn…

一文了解Spring的SPI机制

文章目录 一文了解Spring的SPI机制Java SPIServiceLoader Spring SPISpringboot利用Spring SPI开发starter 一文了解Spring的SPI机制 Java SPI SPI 全称 Service Provider Interface &#xff0c;是 Java提供的一套用来被第三方实现或者扩展的接口&#xff0c;它可以用来启用…

Webpack学习记录

记录学习笔记&#xff0c;欢迎指正 1.大型项目为什么需要打包 1.1 使用打包工具原因 编译或转译文件&#xff1a; 项目中可能用到ES6语法&#xff0c;可能有浏览器不支持。需要打包工具将代码编译输出为ES5语法的代码。项目中可能使用Sass&#xff0c;Less等预处理器&#xff…

【微服务】nacos注册中心

Nacos注册中心 国内公司一般都推崇阿里巴巴的技术&#xff0c;比如注册中心&#xff0c;SpringCloudAlibaba也推出了一个名为Nacos的注册中心。 1.1.认识和安装Nacos Nacos是阿里巴巴的产品&#xff0c;现在是SpringCloud中的一个组件。相比Eureka功能更加丰富&#xff0c;在…

Python collections模块

collections 模块是Python标准库中提供的一个模块&#xff0c;用于提供一些额外的数据容器和工具&#xff0c;扩展了内置的数据类型。它包含了一些有用的类和函数&#xff0c;用于处理各种数据结构和算法问题。下面是 collections 模块中常用的几个类的详细介绍&#xff1a; 1.…