mysql 主从延迟分析

一、如何分析主从延迟

分析主从延迟一般会采集以下三类信息。

从库服务器的负载情况

为什么要首先查看服务器的负载情况呢?因为软件层面的所有操作都需要系统资源来支撑。

常见的系统资源有四类:CPU、内存、IO、网络。对于主从延迟,一般会重点关注 CPU 和 IO 。

分析 CPU 是否达到瓶颈,常用的命令是 top,通过 top 我们可以直观地看到主机的 CPU 使用情况。以下是 top 中 CPU 相关的输出。

Cpu(s):  0.2%us,  0.2%sy,  0.0%ni, 99.5%id,  0.0%wa,  0.0%hi,  0.2%si,  0.0%st

下面我们看看各个指标的具体含义。

  • us:处理用户态( user )任务的 CPU 时间占比。
  • sy:处理内核态( system )任务的 CPU 时间占比。
  • ni:处理低优先级进程用户态任务的 CPU 时间占比。
    进程的优先级由 nice 值决定,nine 的范围是 -20 ~ 19 ,值越大,优先级越低。其中,1 ~ 19 称之为低优先级。
  • id:处于空闲状态( idle )的 CPU 时间占比。
  • wa:等待 IO 的 CPU 时间占比。
  • hi:处理硬中断( irq )的 CPU 时间占比。
  • si:处理软中断( softirq )的 CPU 使用率。
  • st:当系统运行在虚拟机中的时候,被其它虚拟机占用( steal )的 CPU 时间占比。

一般来说,当 CPU 使用率 ( 1 - 处于空闲状态的 CPU 时间占比 )超过 90% 时,需引起足够关注。毕竟,对于数据库应用来说,CPU 很少是瓶颈,除非有大量的慢 SQL 。

接下来看看 IO。

查看磁盘 IO 负载情况,常用的命令是 iostat 。

# iostat -xm 1
avg-cpu:  %user   %nice %system %iowait  %steal   %idle
           4.21    0.00    1.77    0.35    0.00   93.67

Device:         rrqm/s   wrqm/s     r/s     w/s    rMB/s    wMB/s avgrq-sz avgqu-sz   await r_await w_await  svctm  %util
sda               0.00     0.00    0.00    0.00     0.00     0.00     0.00     0.00    0.00    0.00    0.00   0.00   0.00
sdb               0.00     0.00  841.00 3234.00    13.14    38.96    26.19     0.60    0.15    0.30    0.11   0.08  32.60

命令中指定了 3 个选项,其中,

  • -x:打印扩展信息。
  • -m:指定吞吐量的单位是 MB/s ,默认是 KB/s 。
  • 1:每隔 1s 打印一次。

下面看看输出中各指标的具体含义。

  • rrqm/s:每秒被合并的读请求的数量。
  • wrqm/s:每秒被合并的写请求的数量。
  • r/s:每秒发送给磁盘的读请求的数量。
  • w/s:每秒写入磁盘的写请求的数量。注意,这里的请求是合并后的请求。r/s + w/s 等于 IOPS 。
  • rMB/s:每秒从磁盘读取的数据量。
  • wMB/s:每秒写入磁盘的数据量。rMB/s + wMB/s 等于吞吐量。
  • avgrq-sz:I/O 请求的平均大小,单位是扇区,扇区的大小是 512 字节。一般而言,I/O 请求越大,耗时越长。
  • avgqu-sz:队列里的平均 I/O 请求数量。
  • await:I/O 请求的平均耗时,包括磁盘的实际处理时间及队列中的等待时间,单位 ms 。
    其中,r_await 是读请求的平均耗时,w_await 是写请求的平均耗时。
  • svctm:I/O 请求的平均服务时间,单位 ms 。注意,这个指标已弃用,在后续版本会移除。
  • %util:磁盘饱和度。反映了一个采样周期内,有多少时间在做 I/O 操作。

一般来说,我们会重点关注 await 和 %util。

对于只能串行处理 I/O 请求的设备来说,%util 接近 100% ,就意味着设备饱和。但对于 RAID、SSD 等设备,因为它能并行处理,故该值参考意义不大,即使达到了 100% ,也不意味着设备出现了饱和。至于是否达到了性能上限,需参考性能压测下的 IOPS 和吞吐量。

主从复制状态

对于主库,执行 SHOW MASTER STATUS 。

mysql> show master status;
+------------------+----------+--------------+------------------+---------------------------------------------+
| File             | Position | Binlog_Do_DB | Binlog_Ignore_DB | Executed_Gtid_Set                           |
+------------------+----------+--------------+------------------+---------------------------------------------+
| mysql-bin.000004 |  1631495 |              |                  | bd6b3216-04d6-11ec-b76f-000c292c1f7b:1-5588 |
+------------------+----------+--------------+------------------+---------------------------------------------+
1 row in set (0.00 sec)

SHOW MASTER STATUS 的输出中重点关注 File 和 Position 这两个指标的值。

对于从库,执行 SHOW SLAVE STATUS 。

mysql> show slave status\G
*************************** 1. row ***************************
              ...
              Master_Log_File: mysql-bin.000004
          Read_Master_Log_Pos: 1631495
          ...
        Relay_Master_Log_File: mysql-bin.000004
          ...
          Exec_Master_Log_Pos: 1631495
          ...

SHOW SLAVE STATUS 的输出中重点关注 Master_Log_File,Read_Master_Log_Pos,Relay_Master_Log_File,Exec_Master_Log_Pos 这四个指标的值。

接下来,重点比较以下两对值。

第一对:( File , Position ) & ( Master_Log_File , Read_Master_Log_Pos )

这里面,

  • ( File , Position ) 记录了主库 binlog 的位置。
  • ( Master_Log_File , Read_Master_Log_Pos ) 记录了 IO 线程当前正在接收的二进制日志事件在主库 binlog 中的位置。

如果 ( File , Position ) 大于 ( Master_Log_File , Read_Master_Log_Pos ) ,则意味着 IO 线程存在延迟。

第二对:( Master_Log_File , Read_Master_Log_Pos ) & ( Relay_Master_Log_File , Exec_Master_Log_Pos )

这里面,( Relay_Master_Log_File, Exec_Master_Log_Pos ) 记录了 SQL 线程当前正在重放的二进制日志事件在主库 binlog 的位置。

如果 ( Relay_Master_Log_File, Exec_Master_Log_Pos ) < ( Master_Log_File, Read_Master_Log_Pos ) ,则意味着 SQL 线程存在延迟。

Master_Log_File, Relay_Log_File, Relay_Master_Log_File

Master_Log_File
当前IO从master读取的binlog的文件名。
Relog_Log_File
slave的SQL先前当读取的relay log文件名。
Relay_Master_log_File
当前SQL执行的最新的SQL Event是包含在master哪个binlog文件中的。

Read_Master_Log_Pos, Relay_Log_Pos, Exec_Master_Log_Pos

这三个参数可以说是至关重要,也经常被搞混。
Read_Master_Log_Pos
I/O读取到的log在master的binlog中的位置。

Relay_Log_Pos
SQL执行到的Relay Log的位置。

Exec_Master_Log_Pos
SQL执行到的SQL Event在master的binlog中的位置。

如果Read_Master_Log_Pos和master的show master status的位置一样,而Exec_Master_Log_Pos的值小于它们,那说明SQL线程出现了过载,正在执行一个非常熬时间的SQL或者slave服务器的性能出现恶化等等。

主库 binlog 的写入量

主要是看主库 binlog 的生成速度,比如多少分钟生成一个。

二、主从延迟的常见原因及解决方法

下面分别从 IO 线程和 SQL 线程这两个方面展开介绍。

IO 线程存在延迟

下面看看 IO 线程出现延迟的常见原因及解决方法。

  1. 网络延迟。
    判断是否为网络带宽限制。如果是,可开启 slave_compressed_protocol 参数,启用 binlog 的压缩传输。或者从 MySQL 8.0.20 开始,通过 binlog_transaction_compression 参数开启 binlog 事务压缩。
  2. 磁盘 IO 存在瓶颈 。
    可调整从库的双一设置或关闭 binlog。
    注意,在 MySQL 5.6 中,如果开启了 GTID ,则会强制要求开启 binlog ,MySQL 5.7 无此限制。
  3. 网卡存在问题。
    这种情况不多见,但确实碰到过。当时是一主两从的架构,发现一台主机上的所有从库都延迟了,但这些从库对应集群的其它从库却没有延迟,后来通过 scp 远程拷贝文件进一步确认了该台主机的网络存在问题,最后经系统组确认,网卡存在问题。

一般情况下,IO 线程很少存在延迟。

SQL 线程存在延迟

下面看看 SQL 线程出现延迟的常见原因及解决方法。

主库写入量过大,SQL 线程单线程重放

具体体现如下:

  1. 从库磁盘 IO 无明显瓶颈。
  2. Relay_Master_Log_File , Exec_Master_Log_Pos 也在不断变化。
  3. 主库写入量过大。如果磁盘使用的是 SATA SSD,当 binlog 的生成速度快于 5 分钟一个时,从库重放就会有瓶颈。

这个是 MySQL 软件层面的硬伤。要解决该问题,可开启 MySQL 5.7 引入的基于 LOGICAL_CLOCK 的并行复制。

关于 MySQL 并行复制方案,可参考:MySQL 并行复制方案演进历史及原理分析

STATEMENT 格式下的慢 SQL

具体体现,在一段时间内 Relay_Master_Log_File , Exec_Master_Log_Pos 没有变化。

看下面这个示例,对 1 张千万数据的表进行 DELETE 操作,表上没有任何索引,在主库上执行用了 7.52s,观察从库的 Seconds_Behind_Master,发现它最大达到了 7s 。

mysql> show variables like 'binlog_format';
+---------------+-----------+
| Variable_name | Value     |
+---------------+-----------+
| binlog_format | STATEMENT |
+---------------+-----------+
1 row in set (0.00 sec)

mysql> select count(*) from sbtest.sbtest1;
+----------+
| count(*) |
+----------+
| 10000000 |
+----------+
1 row in set (1.41 sec)

mysql> show create table sbtest.sbtest1\G
*************************** 1. row ***************************
       Table: sbtest1
Create Table: CREATE TABLE `sbtest1` (
  `id` int NOT NULL,
  `k` int NOT NULL DEFAULT '0',
  `c` char(120) NOT NULL DEFAULT '',
  `pad` char(60) NOT NULL DEFAULT ''
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.00 sec)

mysql> delete from sbtest.sbtest1 where id <= 100;
Query OK, 100 rows affected (7.52 sec)

对于这种执行较慢的 SQL ,并行复制实际上也是无能为力的, 此时只能优化 SQL。

在 MySQL 5.6.11 中,引入了参数 log_slow_slave_statements ,可将 SQL 重放过程中执行时长超过 long_query_time 的操作记录在慢日志中。

表上没有任何索引,且二进制日志格式为 ROW

同样,在一段时间内,Relay_Master_Log_File , Exec_Master_Log_Pos 不会变化。

如果表上没有任何索引,对它进行操作,在主库上只是一次全表扫描。但在从库重放时,因为是 ROW 格式,对于每条记录的操作都会进行一次全表扫描。

还是上面的表,同样的操作,只不过二进制日志格式为 ROW ,在主库上执行用了 7.53s ,但 Seconds_Behind_Master 最大却达到了 723s ,是 STATEMENT 格式下的 100 倍。

mysql> show variables like 'binlog_format';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| binlog_format | ROW   |
+---------------+-------+
1 row in set (0.00 sec)

mysql> delete from sbtest.sbtest1 where id <= 100;
Query OK, 100 rows affected (7.53 sec)

如果因为表上没有任何索引,导致主从延迟过大,常见的优化方案如下:

  1. 在从库上临时创建个索引,加快记录的重放。注意,尽量选择一个区分度高的列添加索引,列的区分度越高,重放的速度就越快。
  2. 将参数 slave_rows_search_algorithms 设置为 INDEX_SCAN,HASH_SCAN 。
    设置后,对于同样的操作,Seconds_Behind_Master 最大只有 53s 。

大事务

这里的大事务,指的是二进制日志格式为 ROW 的情况下,操作涉及的记录数较多。

还是上面的测试表,只不过这次 id 列是自增主键,执行批量更新操作。更新操作如下,其中,N 是记录数,M 是一个随机字符,每次操作的字符均不一样。

update sbtest.sbtest1 set c=repeat(M,120) where id<=N

接下来我们看看不同记录数下对应 Seconds_Behind_Master 的最大值。

记录数主库执行时长(s)Seconds_Behind_Master最大值(s)
500000.761
2000003.108
50000017.3239
100000063.47122

可见,随着记录数的增加,Seconds_Behind_Master 也是不断增加的。

所以对于大事务操作,建议分而治之,每次小批量执行。

判断一个 binlog 是否存在大事务,可通过我之前写的一个 binlog_summary.py 的工具来分析,该工具的具体用法可参考:Binlog分析利器-binlog_summary.py

从库上有查询操作

从库上有查询操作,通常会有两方面的影响:

1. 消耗系统资源。

2. 锁等待。

常见的是从库的查询操作堵塞了主库的 DDL 操作。看下面这个示例。

mysql> show processlist;
+----+-----------------+-----------------+------+---------+------+----------------------------------+----------------------------------------+
| Id | User            | Host            | db   | Command | Time | State                            | Info                                   |
+----+-----------------+-----------------+------+---------+------+----------------------------------+----------------------------------------+
|  5 | event_scheduler | localhost       | NULL | Daemon  | 2239 | Waiting on empty queue           | NULL                                   |
| 17 | root            | localhost       | NULL | Query   |    0 | init                             | show processlist                       |
| 18 | root            | localhost       | NULL | Query   |   19 | User sleep                       | select id,sleep(1) from sbtest.sbtest1 |
| 19 | system user     | connecting host | NULL | Connect |  243 | Waiting for source to send event | NULL                                   |
| 20 | system user     |                 |      | Query   |   13 | Waiting for table metadata lock  | alter table sbtest.sbtest1 add c2 int  |
+----+-----------------+-----------------+------+---------+------+----------------------------------+----------------------------------------+
5 rows in set (0.00 sec)

从库上存在备份

常见的是备份的全局读锁阻塞了 SQL 线程的重放。看下面这个示例。

mysql> show processlist;
+----+-----------------+-----------------+------+---------+------+----------------------------------+----------------------------------------+
| Id | User            | Host            | db   | Command | Time | State                            | Info                                   |
+----+-----------------+-----------------+------+---------+------+----------------------------------+----------------------------------------+
|  5 | event_scheduler | localhost       | NULL | Daemon  | 4177 | Waiting on empty queue           | NULL                                   |
| 17 | root            | localhost       | NULL | Query   |    0 | init                             | show processlist                       |
| 18 | root            | localhost       | NULL | Query   |   36 | User sleep                       | select id,sleep(1) from sbtest.sbtest2 |
| 19 | system user     | connecting host | NULL | Connect | 2181 | Waiting for source to send event | NULL                                   |
| 20 | system user     |                 |      | Query   |    2 | Waiting for global read lock     | alter table sbtest.sbtest1 add c1 int  |
| 28 | root            | localhost       | NULL | Query   |   17 | Waiting for table flush          | flush tables with read lock            |
+----+-----------------+-----------------+------+---------+------+----------------------------------+----------------------------------------+
6 rows in set (0.00 sec)

磁盘 IO 存在瓶颈

这个时候可调整从库的双一设置或关闭 binlog。

三、总结

综合上面的分析,主从延迟的常见原因及解决方法如下图所示。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/456255.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【LeetCode热题100】206. 反转链表(链表)

一.题目要求 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 二.题目难度 简单 三.输入样例 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[5,4,3,2,1] 示例 2&#xff1a; 输入&#xff1a;head [1,2…

TS使用el-tree拖拽结构+点击写法

1.结构分两块 <template><div style"height:96%;width:100%;max-width:1920px;max-height:1080px;background-color:white;padding:20px;display: flex;flex-direction:row; "><!-- 左侧树 --><div style"height:100%;width:32%;"&g…

【刷题节】美团2024年春招第一场笔试【技术】

1.小美的平衡矩阵 import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner scanner new Scanner(System.in);int n scanner.nextInt();int[][] nums new int[n][n], sum new int[n][n];char[] chars;for (int i 0; i < n; i) {…

使用Python对文本文件进行分词、词频统计和可视化

目录 一、引言 二、文本分词 三、词频统计 四、可视化 五、案例与总结 六、注意事项与扩展 七、总结与展望 一、引言 在大数据时代&#xff0c;文本处理是信息提取和数据分析的重要一环。分词、词频统计和可视化是文本处理中的基础任务&#xff0c;它们能够帮助…

生产线平衡改善的四大方法及vioovi ECRS工时分析软件的应用

生产线平衡是制造业生产过程中的关键环节&#xff0c;它直接影响到生产效率、成本及产品质量。在追求精益生产的今天&#xff0c;改善生产线平衡成为众多企业的重要目标。生产线平衡改善的四大方法包括&#xff1a;保证各工序之间的先后顺序、组合的工序时间不能大于节拍、各工…

Hadoop大数据应用:HDFS 集群节点扩容

目录 一、实验 1.环境 2.HDFS 集群节点扩容 二、问题 1.rsync 同步报错 一、实验 1.环境 &#xff08;1&#xff09;主机 表1 主机 主机架构软件版本IP备注hadoop NameNode &#xff08;已部署&#xff09; SecondaryNameNode &#xff08;已部署&#xff09; Resourc…

迁移学习怎么用

如果想实现一个计算机视觉应用&#xff0c;而不想从零开始训练权重&#xff0c;比方从随机初始化开始训练&#xff0c;更快的方式是下载已经训练好权重的网络结构&#xff0c;把这个作为预训练&#xff0c;迁移到你感兴趣的新任务上。ImageNet、PASCAL等等数据库已经公开在线。…

【OceanBase诊断调优 】——全链路诊断日志看不懂?obdiag来帮你!

最近总结一些诊断OCeanBase的一些经验&#xff0c;出一个【OceanBase诊断调优】专题&#xff0c;也欢迎大家贡献自己的诊断OceanBase的方法。 1. 前言 OceanBase 数据库是分布式数据库&#xff0c;因此调用链路复杂&#xff0c;当出现超时问题的时&#xff0c;往往无法快速定…

【Redis系列】深入了解 Redis:一种高性能的内存数据库

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

EI期刊复现:面向配电网韧性提升的移动储能预布局与动态调度策略程序代码!

适用平台&#xff1a;MatlabYalmipCplex/Gurobi/Mosek 程序提出一种多源协同的两阶段配电网韧性提升策略。在灾前考虑光伏出力不确定性与网络重构&#xff0c;以移动储能配置成本与负荷削减风险成本最小为目标对储能的配置数量与位置进行预布局&#xff1b;在灾后通过多源协同…

离线数仓(六)【ODS 层开发】

前言 今天开始正式的数仓搭建&#xff0c;所谓 ODS 层的工作就是把我们各种数据源采集发送来的各种类型的数据&#xff08;Json、tsv类型&#xff09;映射到 Hive 表中&#xff0c;映射时可以进行一些简单的处理&#xff0c;比如简单的数据清洗&#xff0c;舍弃一些没有必要的字…

3d场景重建图像渲染 | 神经辐射场NeRF(Neural Radiance Fields)

神经辐射场NeRF&#xff08;Neural Radiance Fields&#xff09; 概念 NeRF&#xff08;Neural Radiance Fields&#xff0c;神经辐射场&#xff09;是一种用于3D场景重建和图像渲染的深度学习方法。它由Ben Mildenhall等人在2020年的论文《NeRF: Representing Scenes as Neur…

武汉星起航:创新驱动,共赢未来,引领跨境电商新潮流

在跨境电商这个充满挑战与机遇的领域&#xff0c;武汉星起航凭借其创新思维和共赢理念&#xff0c;正引领着行业发展的新潮流。 武汉星起航深知创新是企业在激烈竞争中立于不败之地的关键。公司始终关注市场动态&#xff0c;紧跟行业趋势&#xff0c;不断探索新的商业模式和运…

京东云主机+京美建站SaaS版

京美建站SaaS版 京美建站搭建企业网站、小程序、3000精美模板 链接:https://daili.jd.com/s?linkNo57UBX34BZMWGNFYTOCPVUE7SN36CCIPKLTFLPCUCPYBKSYYBIPS2BJ57GP7RACLDHU66X526ZOULMIXL2VN7DT7IHU 京东云主机&#xff0c;安全稳定&#xff0c;性能强劲&#xff0c;新客下单…

深入了解RC电路的分类及优化应用方法!

RC电路是由电阻&#xff08;R&#xff09;和电容&#xff08;C&#xff09;组成的电路&#xff0c;它是一种常见的模拟电路&#xff0c;也在数字电路和信号处理中有广泛的应用。RC电路的特性由电阻、电容和电路连接方式决定&#xff0c;它可以用于滤波、时序控制、信号整形等多…

有来团队后台项目-解析6

element-icon 引入 安装 在解析3中&#xff0c;已经安装过 创建plugins 文件夹 icons 文件 import type { App } from "vue"; import * as ElementPlusIconsVue from "element-plus/icons-vue";// 注册所有图标 export function setupElIcons(app: App…

Linux 文件基本属性

Linux 文件基本属性 Linux 系统是一种典型的多用户系统,不同的用户处于不同的地位,拥有不同的权限。 为了保护系统的安全性,Linux 系统对不同的用户访问同一文件(包括目录文件)的权限做了不同的规定。 在 Linux 中我们通常使用以下两个命令来修改文件或目录的所属用户与…

ASP.NET Core 8.0 WebApi 从零开始学习JWT登录认证

文章目录 前言相关链接Nuget选择知识补充JWT不是加密算法可逆加密和不可逆加密 普通Jwt&#xff08;不推荐&#xff09;项目环境Nuget 最小JWT测试在WebApi中简单使用简单使用运行结果 WebApi 授权&#xff0c;博客太老了&#xff0c;尝试失败 WebApi .net core 8.0 最新版Jwt …

【投稿优惠-EI稳定检索】2024年图像处理与机械系统工程国际学术会议 (ICIPMSE 2024)

【投稿优惠-EI稳定检索】2024年图像处理与机械系统工程国际学术会议 (ICIPMSE 2024) 大会主题: (主题包括但不限于, 更多主题请咨询会务组苏老师) 图像处理 基于图像的渲染 计算机视觉 可视化分析 模式识别 3D打印 渲染和动画 渲染技术 电脑动画 基于草图的建模 机械…

详解Python中%r和%s的区别及用法

首先看下面的定义&#xff1a; %r用rper()方法处理对象 %s用str()方法处理对象 函数str() 用于将值转化为适于人阅读的形式&#xff0c;而repr() 转化为供解释器读取的形式&#xff08;如果没有等价的语法&#xff0c;则会发生SyntaxError 异常&#xff09; 某对象没有适于人…