STM32第七节:GPIO输入——按键检测(包含带参宏)

目录

前言

STM32第七节:GPIO输入——按键检测(包含带参宏)

带参宏

代码替换展示

定义带参宏

GPIO输入——按键检测

硬件部分

端口输入数据寄存器(GPIOx_IDR)

编写程序

配置以及编写bsp_key文件

main函数编程

bsp_led.c以及bsp_led.h文件函数编程

使用固件库控制io口

直接操作寄存器的方法控制IO

小结


前言

        上节课我们学习了GPIO输出——使用固件库点亮LED,包含LED以及GPIO的讲解,以及具体代码的编写。那么我们节本课就接着上节课讲讲带参宏以及GPIO输入——按键检测。

        创作不易,点个三连霸!


STM32第七节:GPIO输入——按键检测(包含带参宏)

带参宏

代码替换展示

        我们在编写程序的时候,在其他代码里见到过带参宏的定义;例如LED_G(ON/OFF);这种定义,那么带参宏是纯粹的C语言知识,我们看以下的代码,这里就在上一节的基础上相当于替换掉了GPIO口操作的两行代码,换成了带参宏。

	//GPIO_SetBits(LED_G_GPIO_PORT,LED_G_GPIO_PIN);
	LED_G(OFF);
	Delay(0xFFFFF);
	//GPIO_ResetBits(LED_G_GPIO_PORT,LED_G_GPIO_PIN);
	LED_G(ON);
	Delay(0xFFFFF);

        那么,我们该如何定义带参宏呢?

定义带参宏

        那么我们打开bsp_led.h,再次定义两个宏ON/OFF:

#define ON     1
#define OFF    0

#define LED_G(a)  if(a) \
						GPIO_ResetBits(LED_G_GPIO_PORT,LED_G_GPIO_PIN);\
				  else  GPIO_SetBits(LED_G_GPIO_PORT,LED_G_GPIO_PIN);

        这里我们其实是写了一个宏定义函数,我们设置了ON为1,OFF为0;在下面的宏函数中,定义LED_G(a)中的参量是否为1或0;这样我们就可以控制输出的具体代码,使得main.c文件更加简洁明了,可读性更强。

GPIO输入——按键检测

        上节课讲了GPIO口的输出,这节课我们来讲讲输入。我们可以通过一个按键,来改变外部的这个电平的状态,让io口来读取电平的状态。

硬件部分

        在我们的指南者板子上,只有两个按键K1,K2。 我们看右边的高电平为3V3,但是我们的GPIO对于这个是有限制的,所以我们在前面接了一个限流电阻(R4,R5,R7,R11),当按键没有按下的时候,默认接地,为低电平;按键按下之后,就变成了高电平。因为PA0有自动唤醒的功能wakeup,而wakeup一定要是上升沿才能唤醒的,为了统一风格,所以是上升沿输入。

        电路图中的电容又有什么用呢?之前在学51单片机的时候,我们采取的消抖方式为软件消抖,我们这个是机械按键,需要延时20ms(消抖是前后都要消抖),要不然就会像交流电一样不断接通3.3V,如果我们接了这个电容的话,就会一直给电容充放电,直到稳定。之后无论是按下还是抬起,电容也在不断的充放电,对我们的电路没有影响。所以我们就不需要软件消抖。如果等于高电平,我们就确认按键按下了,如果等于低电平,我们就抬起了按键,进行相应的动作。

端口输入数据寄存器(GPIOx_IDR)

         很显然,这个寄存器还是配置低位的寄存器,不做更改时为0,若配置某位为1,即接通3.3V,变为高电平。

编写程序

        我们现在还没讲中断,等以后我们还会写中断函数(类似51单片机)

配置以及编写bsp_key文件

        我们先打开bsp_key.h文件,定义KEY1和KEY2的宏定义,包括打开时钟,宏定义接口以及设定Pin的值为0和13。

#define    KEY1_GPIO_CLK     RCC_APB2Periph_GPIOA
#define    KEY1_GPIO_PORT    GPIOA			   
#define    KEY1_GPIO_PIN	 GPIO_Pin_0

#define    KEY2_GPIO_CLK     RCC_APB2Periph_GPIOC
#define    KEY2_GPIO_PORT    GPIOC		   
#define    KEY2_GPIO_PIN	 GPIO_Pin_13

        定义好之后,类似bsp_led.c中,我们打开bsp_key.c,然后创建一个函数LED_KEY_Config(void),然后再该函数中定义结构体类型,打开APB2上的时钟,配置模式以及初始化GPIO。

void LED_KEY_Config(void)
{
	GPIO_InitTypeDef GPIO_InitStruct;
	
	RCC_APB2PeriphClockCmd(KEY1_GPIO_CLK,ENABLE);
	
	GPIO_InitStruct.GPIO_Pin = KEY1_GPIO_PIN;
	GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING;
	
	GPIO_Init(KEY1_GPIO_PORT,&GPIO_InitStruct);  //&地址即可
}

        然后我们要创建一个按键检测的函数。刚刚讲过我们的按键是硬件消抖,所以我们这里就不再需要进行delay函数的消抖。我们宏定义按键按下为KEY_ON,释放按键为KEY_OFF;

#define KEY_ON     1
#define KEY_OFF    0

        紧接着我们编写函数,由于有返回值,我们使用uint8_t写函数,先使用if检测是否有按键按下,如果没有就是OFF。然后在按下之后,我们需要检测是否松手,也就是按键的释放。使用while关键字检测是否一直为按下状态。(这里使用了GPIO_ReadInputDataBit函数,用来读取按键的状态):

uint8_t Key_Scan(GPIO_TypeDef* GPIOx,uint16_t GPIO_Pin)
{			
	/*检测是否有按键按下 */
	if(GPIO_ReadInputDataBit(GPIOx,GPIO_Pin) == KEY_ON )  
	{	 
		/*等待按键释放 */
		while(GPIO_ReadInputDataBit(GPIOx,GPIO_Pin) == KEY_ON);   
		return 	KEY_ON;	 
	}
	else
		return KEY_OFF;
}

        这样我们就编写完成函数,记得要声明一下:

void Key_GPIO_Config(void);
uint8_t Key_Scan(GPIO_TypeDef* GPIOx,uint16_t GPIO_Pin);

        到这里我们的bsp_key的函数就全部编写完成了,接下来编写其他函数。

main函数编程

        我们在这里首先引用Key_GPIO_ConfiG();来初始化函数。然后在while循环中写一个if语句,如果按键检测结果为KEY_ON,则使LED1翻转,即LED1_TOGGLE;复制这段代码,拷贝一份到下面,检测按键2的状态。这就是主函数中的代码,接下来我们配置TOGGLE函数以及bsp_led中的函数及代码。

#include "stm32f10x.h"   // 相当于51单片机中的  #include <reg51.h>
#include "bsp_led.h"
#include "bsp_key.h"

void Delay(uint32_t count)
{
	for(;count!=0;count--);
}

int main(void)
{	
	LED_GPIO_Config();
	Key_GPIO_Config();

	while(1)                            
	{	   
		if( Key_Scan(KEY1_GPIO_PORT,KEY1_GPIO_PIN) == KEY_ON  )
		{
			LED1(ON);
		}
		if( Key_Scan(KEY2_GPIO_PORT,KEY2_GPIO_PIN) == KEY_ON  )
		{
			LED2_TOGGLE;
		}	
	}
}

bsp_led.c以及bsp_led.h文件函数编程

        我们先编写宏定义LED连接的GPIO端口RGB。

/* 定义LED连接的GPIO端口, 用户只需要修改下面的代码即可改变控制的LED引脚 */
// R-红色
#define LED1_GPIO_PORT    	GPIOB			            /* GPIO端口 */
#define LED1_GPIO_CLK 	    RCC_APB2Periph_GPIOB		/* GPIO端口时钟 */
#define LED1_GPIO_PIN		GPIO_Pin_5		        	/* 连接到SCL时钟线的GPIO */

// G-绿色
#define LED2_GPIO_PORT    	GPIOB
#define LED2_GPIO_CLK 	    RCC_APB2Periph_GPIOB
#define LED2_GPIO_PIN		GPIO_Pin_0

// B-蓝色
#define LED3_GPIO_PORT    	GPIOB
#define LED3_GPIO_CLK 	    RCC_APB2Periph_GPIOB
#define LED3_GPIO_PIN		GPIO_Pin_1

#define ON     1
#define OFF    0

        如果我们想实现翻转LED灯,可以通过控制寄存器的方法,也可以通过控制标准的固件库的方法来控制io口。

使用固件库控制io口

        本节课刚开始就介绍了带参宏的定义,我们可以通过这个办法来控制:

/* 使用标准的固件库控制IO*/
#define LED1(a)	if (a)	\
					GPIO_SetBits(LED1_GPIO_PORT,LED1_GPIO_PIN);\
					else		\
					GPIO_ResetBits(LED1_GPIO_PORT,LED1_GPIO_PIN)

#define LED2(a)	if (a)	\
					GPIO_SetBits(LED2_GPIO_PORT,LED2_GPIO_PIN);\
					else		\
					GPIO_ResetBits(LED2_GPIO_PORT,LED2_GPIO_PIN)

#define LED3(a)	if (a)	\
					GPIO_SetBits(LED3_GPIO_PORT,LED3_GPIO_PIN);\
					else		\
					GPIO_ResetBits(LED3_GPIO_PORT,LED3_GPIO_PIN)
直接操作寄存器的方法控制IO

        在使用这个方法之前,我们先介绍一下C语言中的异或二进制运算符^。0^1为1,1^1为0;而0^0为0,1^0为1,然后我们就可以控制io口。我们既需要操作BSRR和BRR寄存器,也需要操作ODR寄存器,分别输出高电平,低电平以及输出反转状态。

/* 直接操作寄存器的方法控制IO */
#define	digitalHi(p,i)		   {p->BSRR=i;}	   //输出为高电平		
#define digitalLo(p,i)		   {p->BRR=i;}	   //输出低电平
#define digitalToggle(p,i)     {p->ODR ^=i;}   //输出反转状态

/* 定义控制IO的宏 */
#define LED1_TOGGLE		   digitalToggle(LED1_GPIO_PORT,LED1_GPIO_PIN)
#define LED1_OFF		   digitalHi(LED1_GPIO_PORT,LED1_GPIO_PIN)
#define LED1_ON			   digitalLo(LED1_GPIO_PORT,LED1_GPIO_PIN)

#define LED2_TOGGLE		   digitalToggle(LED2_GPIO_PORT,LED2_GPIO_PIN)
#define LED2_OFF		   digitalHi(LED2_GPIO_PORT,LED2_GPIO_PIN)
#define LED2_ON			   digitalLo(LED2_GPIO_PORT,LED2_GPIO_PIN)

#define LED3_TOGGLE		   digitalToggle(LED3_GPIO_PORT,LED3_GPIO_PIN)
#define LED3_OFF		   digitalHi(LED3_GPIO_PORT,LED3_GPIO_PIN)
#define LED3_ON			   digitalLo(LED3_GPIO_PORT,LED3_GPIO_PIN)

        然后我们就可以使用三原色来进行混色:(基本混色)

/* 基本混色,后面高级用法使用PWM可混出全彩颜色,且效果更好 */
//红
#define LED_RED  \
					LED1_ON;\
					LED2_OFF\
					LED3_OFF

//绿
#define LED_GREEN		\
					LED1_OFF;\
					LED2_ON\
					LED3_OFF

//蓝
#define LED_BLUE	\
					LED1_OFF;\
					LED2_OFF\
					LED3_ON
					
//黄(红+绿)					
#define LED_YELLOW	\
					LED1_ON;\
					LED2_ON\
					LED3_OFF
					
//紫(红+蓝)
#define LED_PURPLE	\
					LED1_ON;\
					LED2_OFF\
					LED3_ON

//青(绿+蓝)
#define LED_CYAN \
					LED1_OFF;\
					LED2_ON\
					LED3_ON
					
//白(红+绿+蓝)
#define LED_WHITE	\
					LED1_ON;\
					LED2_ON\
					LED3_ON
					
//黑(全部关闭)
#define LED_RGBOFF	\
					LED1_OFF;\
					LED2_OFF\
					LED3_OFF

         在bsp_led.c文件中,我们需要配置初始化结构体,然后打开时钟(有选择性);然后紧接着设置模式以及速度。(都是前几节课熟知的,不在多讲)然后就是通过控制3个Pin的值然后初始化GPIO口;并附带关闭所有LED灯的代码:

void LED_GPIO_Config(void)
{
		GPIO_InitTypeDef GPIO_InitStructure;

		RCC_APB2PeriphClockCmd( LED1_GPIO_CLK | LED2_GPIO_CLK | LED3_GPIO_CLK, ENABLE);
		GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
		GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	
		GPIO_InitStructure.GPIO_Pin = LED1_GPIO_PIN;
		GPIO_Init(LED1_GPIO_PORT, &GPIO_InitStructure);	 //&地址即可
		
		GPIO_InitStructure.GPIO_Pin = LED2_GPIO_PIN;
		GPIO_Init(LED2_GPIO_PORT, &GPIO_InitStructure);
		
		GPIO_InitStructure.GPIO_Pin = LED3_GPIO_PIN;
		GPIO_Init(LED3_GPIO_PORT, &GPIO_InitStructure);

		/* 关闭所有led灯	*/
		GPIO_SetBits(LED1_GPIO_PORT, LED1_GPIO_PIN);
		GPIO_SetBits(LED2_GPIO_PORT, LED2_GPIO_PIN);	 
		GPIO_SetBits(LED3_GPIO_PORT, LED3_GPIO_PIN);
}

        如果断言错误,我们执行如下代码:

void assert_failed(uint8_t* file, uint32_t line)
{
	// 断言错误时执行的代码
	LED1_ON;
}

小结

        到这里我们就写完了所有代码,以及代码的讲解(两种方式控制io口)。下节课我们学习位带操作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/455156.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

用虚拟机安装win10超详细教程。

前言&#xff1a;安装中有任何疑问&#xff0c;可以在评论区提问&#xff0c;博主身经百战会快速解答小伙伴们的疑问 BT、迅雷下载win10镜像&#xff08;首先要下载win10的镜像&#xff09;&#xff1a;ed2k://|file|cn_windows_10_business_editions_version_1903_updated_sep…

项目中日志采集实践:技术、工具与最佳实践

✨✨谢谢大家捧场&#xff0c;祝屏幕前的小伙伴们每天都有好运相伴左右&#xff0c;一定要天天开心哦&#xff01;✨✨ &#x1f388;&#x1f388;作者主页&#xff1a; 喔的嘛呀&#x1f388;&#x1f388; 目录 引言 一. 选择合适的日志框架 二. 配置日志框架 三. 使用…

web 课程

文章目录 格式图片超链接书签链接表格例子横跨束跨 格式 <br /> <br/> #换行图片 <img> 标签是用于在网页中嵌入图像的 HTML 标签&#xff0c;它有一些属性可以用来控制图像的加载、显示和交互。以下是对 <img> 标签常用属性的详细介绍&#xff1a;…

SpringCloud Gateway 新一代网关

一、前言 接下来是开展一系列的 SpringCloud 的学习之旅&#xff0c;从传统的模块之间调用&#xff0c;一步步的升级为 SpringCloud 模块之间的调用&#xff0c;此篇文章为第六篇&#xff0c;即介绍 Gateway 新一代网关。 二、概述 2.1 Gateway 是什么 Gateway 是在 Spring 生…

在域控的Users目录下批量创建用户组,名称来自Excel

对于CSV文件&#xff0c;PowerShell可以直接读取并处理&#xff0c;无需额外安装模块。假设你的CSV文件中&#xff0c;用户组名称在第一列&#xff0c;文件名为"groups.csv"&#xff0c;可以使用以下PowerShell脚本来批量创建&#xff1a; # 读取CSV文件中的数据 $g…

学生时期学习资源同步-1 第一学期结业考试题2

原创作者&#xff1a;田超凡&#xff08;程序员田宝宝&#xff09; 版权所有&#xff0c;引用请注明原作者&#xff0c;严禁复制转载

【Python】科研代码学习:十 evaluate (metrics,Evaluator)

【Python】科研代码学习&#xff1a;十 evaluate Evaluate评估类型简单使用教程如何寻找想要的 metric使用 Evaluator与 transformers.trainer 配合使用疑问与下节预告 Evaluate 【HF官网-Doc-Evaluate&#xff1a;API】 看名字就可以知道&#xff0c;Evaluate 是 HF 提供的便…

中国湿地沼泽分类分布数据集

数据下载链接&#xff1a;百度云下载链接 引言 随着经济社会的快速发展和城市化进程的加速推进&#xff0c;农业发生功能性转变&#xff0c;从单一生产功能向生产、生活、生态多功能服务首都经济社会发展转变。湿地与农田、草地、森林三大生态系统整合形成完整的现代农业生态服…

Linux环境(Ubuntu)上搭建MQTT服务器(EMQX )

目录 概述 1 认识EMQX 1.1 EMQX 简介 1.2 EMQX 版本类型 2 Ubuntu搭建EMQX 平台 2.1 下载和安装 2.1.1 下载 2.1.2 安装 2.2 查看运行端口 3 运行Dashboard 管理控制台 3.1 查看Ubuntu上的防火墙 3.2 运行Dashboard 管理控制台 概述 本文主要介绍EMQX 的一些内容&a…

云计算 3月12号 (PEX)

什么是PXE&#xff1f; PXE&#xff0c;全名Pre-boot Execution Environment&#xff0c;预启动执行环境&#xff1b; 通过网络接口启动计算机&#xff0c;不依赖本地存储设备&#xff08;如硬盘&#xff09;或本地已安装的操作系统&#xff1b; 由Intel和Systemsoft公司于199…

游戏数据处理

游戏行业关键数据指标 ~ 总激活码发放量、总激活量、总登录账号数 激活率、激活登录率 激活率 激活量 / 安装量 激活率 激活量 / 激活码发放量 激活且登录率 激活且登录量 / 激活码激活量 激活且登录率应用场景 激活且登录率是非常常用的转化率指标之一&#xff0c;广泛…

今天我们来学习一下关于MySQL数据库

目录 前言: 1.MySQL定义&#xff1a; 1.1基础概念&#xff1a; 1.1.1数据库&#xff08;Database&#xff09;&#xff1a; 1.1.2表&#xff08;Table&#xff09;&#xff1a; 1.1.3记录&#xff08;Record&#xff09;与字段&#xff08;Field&#xff09;&#xff1a; …

C语言strcmp函数讲解

strcmp函数介绍 在cplusplus官网上是这样介绍strcmp函数的 这里的意思是假如我们输入两个字符串一个是abcdef另一个也是abcdef他们两个字符的每个元素的ascii码值进行比较如果两个元素的ascii码值都相等就移动到下一个元素a与a进行比较b与b进行比较直到遇到\0为止&#xff0c…

数据结构:7、队列

一、队列的概念与结构 队列&#xff1a;只允许在一端进行插入数据操作&#xff0c;在另一端进行删除数据操作的特殊线性表&#xff0c;队列具有先进先出FIFO(First In First Out) 入队列&#xff1a;进行插入操作的一端称为队尾 出队列&#xff1a;进行删除操作的一端称为队头…

功能测试--APP性能测试

功能测试--APP性能测试 内存数据查看内存测试 CPU数据查看CPU测试 流量和电量的消耗流量测试流量优化方法电量测试电量测试场景&#xff08;大&#xff09; 获取启动时间启动测试--安卓 流畅度流畅度测试 稳定性稳定性测试 内存数据查看 内存泄露:内存的曲线持续增长(增的远比减…

码头船只出行和货柜管理系统的设计与实现

针对于码头船只货柜信息管理方面的不规范&#xff0c;容错率低&#xff0c;管理人员处理数据费工费时&#xff0c;采用新开发的码头船只货柜管理系统可以从根源上规范整个数据处理流程。 码头船只货柜管理系统能够实现货柜管理&#xff0c;路线管理&#xff0c;新闻管理&#…

【MMDetection3D实战(3)】: KITTI 数据集介绍

文章目录 1. 数据集介绍2 数据下载及准备2.1 下载并整理数据集2.2 传感器及坐标定义2.3 数据的标注3 MMDet3D 中的坐标系规范4 数据的处理及可视化4.1 数据处理4.2 点云读取和可视化4.2.1 点云的读取4.2.2 点云的可视化1. 数据集介绍 KITTI数据集是3D目标检测中比较基础和常用…

【LeetCode】升级打怪之路 Day 17:二叉树题型 —— 二叉树的序列化与反序列化

今日题目&#xff1a; 297. 二叉树的序列化与反序列化652. 寻找重复的子树 目录 LC 297. 二叉树的序列化与反序列化 【classic】 ⭐⭐⭐⭐⭐1&#xff09;序列化逻辑2&#xff09;反序列化逻辑 LC 652. 寻找重复的子树 【稍有难度】 今天主要学习了二叉树的序列化和反序列化相关…

数字逻辑-时序逻辑电路一

一、实验目的 &#xff08;1&#xff09;熟悉触发器的逻辑功能及特性。 &#xff08;2&#xff09;掌握集成D和JK触发器的应用。 &#xff08;3&#xff09;掌握时序逻辑电路的分析和设计方法。 二、实验仪器及材料 三、实验内容及步骤 1、用D触发器&#xff08;74LS74&am…

使用Docker在windows上安装IBM MQ

第一步、安装wsl 详见我另一篇安装wsl文章。 第二步、安装centos 这里推荐两种方式&#xff0c;一种是从微软商城安装&#xff0c;一种是使用提前准备好的镜像安装&#xff0c;详见我另一篇windos下安装centos教程。 第三步、安装windows下的Docker desktop 详见我另一篇wind…