多数问题求解之蒙特卡洛与分治法

多数问题(Majority Problem)是一个有多种求解方法的经典问题,其问题定义如下:

给定一个大小为 n n n的数组,找出其中出现次数超过 n / 2 n/2 n/2的元素

例如:当输入数组为 [ 5 , 3 , 5 , 2 , 3 , 5 , 5 ] [5, 3, 5, 2, 3, 5, 5] [5,3,5,2,3,5,5],则 5 5 5是多数(majority)。

本文将介绍该问题的多种求解方法,重点介绍蒙特卡洛与分治法2种。

1. 解决思路

面对一个未知的算法问题,我们最开始很自然地会使用简单粗暴的方法。

1.1 暴力解法

暴力解法就是遍历整个数组,依次判断每个元素是否是多数。其伪代码如下:

Majority(A[1, n])
for(i = 1 to n)
	cnt = 1
	for(j = 1 to n)
		if (i != j and A[i]==A[j])
			cnt++
	end
	if (cnt > n/2) 
		return "A[i] is the majortiy"
 end
 return "No majority"

暴力算法的缺点就是费时间,时间复杂度为 O ( n 2 ) O(n^2) O(n2)。那有什么办法能少一些遍历的时间代价呢?哈希表就是一种用空间换时间的方法。

1.2 哈希表

上面的暴力解法中,我们在循环遍历中更新元素出现的次数,然后再判断是否是多数。可以改为只遍历数组一次,用哈希表记录每个元素出现的次数,然后再遍历哈希表找到出现次数最大的元素,判断其出现次数是否超过 n / 2 n/2 n/2

这样时间复杂度降为了 O ( n ) O(n) O(n),空间复杂度为 O ( n ) O(n) O(n)。时间复杂度还能更优化一点吗?下面让我们来看下分治法的求解思路。

1.3 分治法

我们把原始数组分为两半:在前一半子数组中,找到多数 A A A;在后一半子数组中,找到多数 B B B。那么原始数组的多数一定在 A A A B B B之间,当二者相等时,原始数组的多数就已经找到了;当二者不等时,比较 A A A B B B出现的次数哪个大于 n / 2 n/2 n/2即可。

算法的时间复杂度 T ( n ) = T ( n / 2 ) + 2 n = O ( n log ⁡ n ) T(n)=T(n/2)+2n=O(n\log{n}) T(n)=T(n/2)+2n=O(nlogn)。具体的C语言代码实现可参见第2节。

1.4 蒙特卡洛法

蒙特卡罗(Monte Carlo)算法是一种随机算法,在一般情况下可以保证对问题的所有实例都以高概率给出正确解,但是通常无法判定一个具体解是否正确。

在多数问题中,蒙特卡洛法的思想是随机从数组中选择一个元素,判断是否是多数。如果不是多数的话,再随机选择一个。在存在多数的情况下,因为随机选择到多数的概率超过 1 2 \frac{1}{2} 21,算法找不到多数的概率小于 1 2 \frac{1}{2} 21

该算法的平均时间复杂度为 O ( n ) O(n) O(n)

2. 代码

以下C语言代码依次实现了Monte Carlo以及分治法求解多数问题,并比较了两种算法的运行时间。

  1. 首先用户需输入测试数据的文件路径,按下回车键。
  2. 然后进入Monte Carlo模式需输入重复的次数。
  3. 待用户输入完成,按下回车键后,对Monte Carlo算法求解多数问题计时开始,直至输出多数问题的结果计时结束,打印输出运行时间(ms)。
  4. Monte Carlo结束后直接进入分治法求解,开始计时,直至分治法输出多数问题的结果计时结束,打印输出运行时间(ms)。
#include <iostream>
#include <cstdlib>
#include <ctime>
#include <windows.h> 

using namespace std;

const int N = 2000000;        //定义数组的最大长度 

int a[N];

bool majorityMC_once(int a[], int len, int *result) { //对长度为len的数组a[]进行一次蒙特卡洛寻找多数 
	int rnd = rand() % len;  //生成[0, len-1)的一个随机下标 
	int x = a[rnd];
	int count = 0;           //记录 x 在数组a[]中出现的次数 
	for (int i = 0; i < len; i++) { 
		if (a[i] == x) {
			count++;
		}
	}
	if (count > (len / 2)) { //若 x 出现次数超过数组长度的一半,则一次蒙特卡洛找到多数,返回true 
		*result = x;         //将找到的多数的值传给result 
		return true;
	} 
	else {                   //否则,一次蒙特卡洛未找到多数,返回false 
		return false;
	}
}

bool majorityMC_k_times(int a[], int len, int *result, int k) { //k次蒙特卡洛 
	for (int i = 1; i <= k; i++) {
		if(majorityMC_once(a, len, result)) { //只要有一次蒙特卡洛找到多数,则返回true              
			return true;
		}
	} 
	return false;                             //k次蒙特卡洛均未找到多数,则返回false 
}

bool majorityDC(int a[], int start, int end, int *result) { //分治法求解多数问题,数组下标区间为[start, end] 
	if (start == end) {
		*result = a[end];
		return true;
	}
	else {
		int m1, m2;
		majorityDC(a, start, (start + end) / 2, &m1);    //m1为前半区间[start, (start + end) / 2]的多数 
		majorityDC(a, (start + end) / 2 + 1, end, &m2);  //m2为后半区间[(start + end) / 2 + 1, end]的多数 
		int count1 = 0, count2 = 0;
		for (int i = start; i <= end; i++) {
			if (a[i] == m1) {     //count1记录m1在数组a[]中出现的次数 
				count1++;
			}
			if (a[i] == m2) {     //count2记录m2在数组a[]中出现的次数 
				count2++;
			}
		}
		if (count1 > ((end - start + 1) / 2)) { //m1在数组a[]中出现的次数大于数组长度的一半,则m1为多数 
			*result = m1;
			return true;
		} 
		else if (count2 > ((end - start + 1) / 2)) { //m2在数组a[]中出现的次数大于数组长度的一半,则m2为多数 
			*result = m2;
			return true;
		}
		else {  
			return false;         //m1, m2均不是多数,则数组a[]的多数不存在
		}
	}
}

int main() {
	srand(time(NULL));  //设置时间函数time(NULL)为随机数种子 
	char s[100];
	cout << "请输入测试数据文件路径:" << endl;
	cin >> s; 
	FILE *fp;
	fp = fopen(s, "r");
	if (fp == NULL) {
		cout << "Can not open the file!" << endl;
		exit(0);
	}
	int i = 0;
	while (fscanf(fp, "%d\n", &a[i]) != EOF) {  //读取文件中的数据到数组a[]中 
		i++;
	}
	fclose(fp); 
	cout << "********************** Monte Carlo *********************" << endl;
	int k;
	cout << "请输入 Monte Carlo 重复的次数: ";
	cin >> k;
	LARGE_INTEGER nFreq;
	LARGE_INTEGER nBeginTime;
	LARGE_INTEGER nEndTime;
	QueryPerformanceFrequency(&nFreq);
	QueryPerformanceCounter(&nBeginTime);  //Monte Carlo计时开始 
	int resultMC;
	if (majorityMC_k_times(a, i, &resultMC, k)) {
		cout << resultMC << " is the majority" << endl;
	} 
	else {
		cout << "Can not find the majority!" << endl;
	}
	QueryPerformanceCounter(&nEndTime);  //Monte Carlo计时结束 
	double time = (double)(nEndTime.QuadPart - nBeginTime.QuadPart) / nFreq.QuadPart * 1000;
	cout << "Running time: " << time << "ms" << endl;
	cout << endl;
	cout << "****************** Divide and Conquer ******************" << endl;
	QueryPerformanceFrequency(&nFreq);
	QueryPerformanceCounter(&nBeginTime);  //分治法计时开始 
	int resultDC;
	if (majorityDC(a, 0, i - 1, &resultDC)) {
		cout << resultDC << " is the majority" << endl;
	} 
	else {
		cout << "Can not find the majority!" << endl;
	}
	QueryPerformanceCounter(&nEndTime);    //分治法计时结束 
	time = (double)(nEndTime.QuadPart - nBeginTime.QuadPart) / nFreq.QuadPart * 1000;
	cout << "Running time: " << time << "ms" << endl;
	return 0;
}

3. 运行结果

基于测试数据,求解得到如下结果:

  • dataset1.txt:none
  • dataset2.txt:991
  • data_1015.txt:none
  • data_1015l.txt:none

多次运行程序发现,在多数问题有解时,采用Monte Carlo算法求解效率普遍比分治法高,但是在Monte Carlo算法重复次数较少时,它在实际中并不总是返回正确结果。如测试数据为dataset2.txt,Monte Carlo重复1次时,可能会找不到多数问题的解,如下图。

在这里插入图片描述

其他运行示例:

(1)dataset1.txt,Monte Carlo重复次数1000:

在这里插入图片描述

(2)dataset2.txt,Monte Carlo重复次数20:

在这里插入图片描述

(3)data_1015.txt,Monte Carlo重复次数1000:

在这里插入图片描述

(4)data_1015l.txt,重复次数1000:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/454445.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Qt 如何搭建Lua的运行环境

一、Lua简介 Lua 是一种强大的、高效的、轻量级的、可嵌入的脚本语言。它支持过程&#xff08;procedural&#xff09;编程、面向对象编程、函数式编程以及数据描述。Lua 是动态类型的&#xff0c;运行速度快&#xff0c;支持自动内存管理&#xff0c;因此被广泛用于配置、脚本…

java-集合工具类Collections

我们在使用它的时候记得导包 常见API 我们就简单看看第一第二个方法&#xff0c;代码如下&#xff0c;其余的知道用就行

基于经验模式分解和小波阈值的自适应降噪研究_杨铮

目的 针对轴承信号在采集过程中容易受到不同环境下噪声干扰&#xff0c;提出EMD分解结合小波阈值的自适应降噪的方法&#xff0c;对轴承振动信号进行降噪处理&#xff0c;提取出所需要的振动信号。方法 首先对含有噪声的轴承信号进行EMD分解&#xff0c;得到n个IMF并进行小波阈…

GUROBI之数学启发式算法Matheuristics

参考运小筹的帖子&#xff1a;优化求解器 | Gurobi 数学启发式算法&#xff1a;参数类型与案例实现 - 知乎 (zhihu.com) 简言之&#xff0c;数学启发式是算法就是数学规划和启发式算法的融合&#xff0c;与元启发式算法相比&#xff0c;数学启发式算法具有更强的理论性。 在GUR…

C++初阶

1.缺省参数 给缺省参数的时候&#xff0c;不能声明&#xff0c;定义同时给&#xff0c;只能声明的时候给缺省参数&#xff0c;同时给程序报错&#xff1b; 2.函数重载 C语言不允许同名函数的存在&#xff0c;函数名不能相同&#xff0c;C引入函数重载&#xff0c;函数名可以…

SOLIDWORKS 2024新版价格 SOLIDWORKS2024专业版白金版多少钱?

达索 SOLIDWORKS 一直以来都致力于让每位设计师和工程师的设计都触手可及。SOLIDWORKS贯彻的使命就是通过功能强大且易于使用的产品开发解决方案&#xff0c;在创造、协作和提供创新的产品体验方面助您一臂之力。SOLIDWORKS 2024延续了这一期望&#xff0c;同时开启了强化使用S…

Altium Designer快速入门及项目实战教程之PCB设计(四)

一、引言 在我们的Altium Designer系列教程中&#xff0c;我们已经一起走过了软件界面的初识、原理图的绘制&#xff0c;以及元件库的建立。今天&#xff0c;我们将进入这一系列教程的高潮部分——PCB设计。 PCB设计不仅是电子产品开发过程中的核心&#xff0c;也是检验一个电…

Maven项目添加依赖

maven仓库&#xff1a;Maven Repository: Search/Browse/Explore (mvnrepository.com) 1.在maven仓库中搜素自己想要的依赖&#xff0c;选择合适的版本号&#xff0c;复制以下内容(依赖坐标)。 2.在pom.xml中把复制的粘贴进去。刷新。&#xff08;注意内容要放在dependencies双…

修改表结构

目录 修改表结构 创建数据表插入数据 修改已有列 修改 member 表的 name 列的定义 为表增加列 增加一个 address 列&#xff0c;这个列上不设置默认值 增加一个 sex 列&#xff0c;这个列上设置默认值 删除表中的列 删除 sex 列 Oracle从入门到总裁:​​​​​​https…

西门子PLCS7-1200位逻辑指令的使用

1.LAD触点 常开触点的位值为1时&#xff0c;常开触点将闭合&#xff08;ON&#xff09;。位值为0时&#xff0c;常开触点将闭合&#xff08;OFF&#xff09;。 常闭触点的位值为1时&#xff0c;常闭触点将闭合&#xff08;OFF&#xff09;。位值为0时&#xff0c;常闭触点将闭…

一文掌握mysql中的查询语句

目录 1. 聚合查询1.1 聚合函数1.2 GROUP BY子句1.3 HAVING 2. 联合查询2.1 内连接2.2 外连接2.3 自连接2.4 子查询2.5 合并查询 1. 聚合查询 1.1 聚合函数 常见的统计总数、计算平局值等操作&#xff0c;可以使用聚合函数来实现&#xff0c;常见的聚合函数有&#xff1a; 函…

从0到1:如何用AI完成高质量的科研论文写作?

人工智能革命&#xff1a;如何让聊天机器人更懂你 人工智能正在以其强大的数据处理和语言生成能力改变世界。在学术界&#xff0c;大语言模型&#xff08;LLM&#xff09;为科学交流带来了一种新的工具。我们旨在有效地将AI工具与学术写作相结合&#xff0c;以更有效和更有影响…

关于图在推荐系统中的研究

业界最新的论文 Intent-aware Recommendation via Disentangled Graph Contrastive Learning 作者&#xff1a;Yuling Wang, Xiao Wang, Xiangzhou Huang, Yanhua Yu, Haoyang Li, Mengdi Zhang, Zirui Guo, Wei Wu 地址&#xff1a;https://arxiv.org/abs/2403.03714 论文…

Java毕业设计-基于spring boot开发的实习管理系统-毕业论文+答辩ppt(附源代码+演示视频)

文章目录 前言一、毕设成果演示&#xff08;源代码在文末&#xff09;二、毕设摘要展示1.开发说明2.需求分析3、系统功能结构 三、系统实现展示1、前台功能模块2、后台功能模块2.1 管理员功能2.2 教师功能2.3 学生功能2.4 实习单位功能 四、毕设内容和源代码获取总结 Java毕业设…

Ps:清理

清理 Purge命令位于“编辑”菜单下&#xff0c;它主要用于释放 Photoshop 使用的内存资源&#xff0c;有助于提高系统的性能。 通过使用“清理”命令&#xff0c;用户可以有效管理 Photoshop 的资源使用&#xff0c;特别是在处理大型文件或进行长时间编辑会话时。 定期清理可以…

科研学习|论文解读——一种修正评分偏差并精细聚类中心的协同过滤推荐算法

知网链接 一种修正评分偏差并精细聚类中心的协同过滤推荐算法 - 中国知网 (cnki.net) 摘要 协同过滤作为国内外学者普遍关注的推荐算法之一&#xff0c;受评分失真和数据稀疏等问题影响&#xff0c;算法推荐效果不尽如人意。为解决上述问题&#xff0c;本文提出了一种改进的聚类…

web项目的搭建

使用Webstorm并创建Next.js文件 1、配置nodejs环境、安装webstorm【配置node.js可以使用nvm去管理nodejs的版本】 2、需要破解webstorm&#xff0c;可能会导致原本的idea失效&#xff0c;注册码过期 3、taobao的npm过期&#xff0c;导致npm is sass执行不成功&#xff0c;需…

openAI key 与ChatGPTPlus的关系,如何升级ChatGPTPLus

一、前言 先详细介绍一下Plus会员和Open API之间的区别&#xff1a; 实际上&#xff0c;这两者是相互独立的。举例来说&#xff0c;虽然您开通了Plus会员&#xff0c;并不意味着您就可以使用4.0版本的API。尽管这两个账户可以是同一个&#xff0c;但它们是完全独立的平台。 …

Linux信号机制(二)

目录 一、信号的阻塞 二、信号集操作函数 三、sigprocmask函数 四、pause函数 五、sigsuspend函数 一、信号的阻塞 有时候不希望在接到信号时就立即停止当前执行&#xff0c;去处理信号&#xff0c;同时也不希望忽略该信号&#xff0c;而是延时一段时间去调用信号处理函数。…

媒体单位专用小记者报名及各类活动报名系统介绍

媒体单位专用小记者报名及各类活动报名系统介绍 小记者活动鼓励孩子们关注生活和社会&#xff0c;丰富成长体验&#xff0c;开启心智&#xff0c;淬砺思想。这不仅有助于提高他们的理性思辨力&#xff0c;还能培养他们的社会责任感和公民意识。小记者活动为学生提供了一个全新…