【论文速读】| DeepGo:预测式定向灰盒模糊测试

图片

本次分享论文为:DeepGo: Predictive Directed Greybox Fuzzing

基本信息

原文作者:Peihong Lin, Pengfei Wang, Xu Zhou, Wei Xie, Gen Zhang, Kai Lu

作者单位:国防科技大学计算机学院

关键词:Directed Greybox Fuzzing, Path Transition Model, Reinforcement Learning, Deep Neural Networks

原文链接:

https://www.ndss-symposium.org/wp-content/uploads/2024-514-paper.pdf

开源代码:

https://gitee.com/paynelin/DeepGo

论文要点

论文简介:本文提出了一种名为DeepGo的预测式定向性灰盒模糊测试方法,通过结合历史和预测信息,利用深度神经网络和强化学习技术,有效地引导模糊测试达到目标路径,优化测试效率。

研究背景:定向性灰盒模糊测试(DGF)是一种高效的代码测试技术,通过定义可测量的适应性指标,选取潜在的种子进行变异,以逐渐接近目标站点。然而,现有的DGF技术主要依赖于启发式算法进行适应性指标的优化,缺乏对未执行路径的预见性。

图片

研究贡献:

a.提出了路径转换模型,将DGF视为通过特定路径转换序列达到目标站点的过程,并使用序列奖励作为适应性指标。

b.构建了虚拟集成环境(VEE)使用深度神经网络(DNNs)来模仿路径转换模型并预测潜在路径转换及其对应的奖励。

c.开发了一种强化学习模糊测试(RLF)模型,结合历史和预测的路径转换来生成最优路径转换序列。

d.通过行为群组的概念综合优化模糊测试的关键步骤,提高了测试效率。

引言

DeepGo的研究背景基于现有定向性灰盒模糊测试(DGF)技术的局限性,特别是在优化适应性指标时的缺乏预见性和效率低下的问题。通过引入路径转换模型、虚拟集成环境(VEE)、强化学习模糊测试(RLF)模型和行为群组优化策略,DeepGo能够预测和优化模糊测试过程,实现更高效和精确的测试目标达成。

背景知识

研究讨论了定向性灰盒模糊测试的基本概念、深度神经网络在模拟程序分支行为中的应用、强化学习在序列决策问题解决中的作用、基于模型的策略优化和粒子群优化算法在提高模糊测试效率中的应用。

论文方法

理论背景:通过深入分析DGF的限制,提出一种新的模型——路径转换模型,使用序列奖励作为新的适应性指标。

方法实现: 

a.虚拟集成环境(VEE):利用深度神经网络模仿路径转换模型,预测未执行路径的潜在转换及其奖励。

b.强化学习模糊测试(RLF)模型:结合历史和预测信息,优化路径选择策略,生成最优路径转换序列。

c.行为群组优化:通过多元素粒子群优化算法同时优化模糊测试的关键步骤,提高测试效率。

实验

实验设置:在两个基准测试套件上评估DeepGo,包含25个程序和100个目标站点。

实验结果:DeepGo与现有技术相比,在达到目标站点和暴露已知漏洞方面显示出显著的速度提升,证明了其预测能力和效率。

论文结论

DeepGo通过引入路径转换模型、虚拟集成环境(VEE)、强化学习模糊测试(RLF)模型和行为群组优化策略,显著优化了定向性灰盒模糊测试的效率和精度。实验结果证明了DeepGo在提高目标站点达成速度和暴露已知漏洞方面的优势,为未来的模糊测试技术发展提供了新的方向。

原作者:论文解读智能体

润色:Fancy

校对:小椰风

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/452847.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

视频配音最佳助手--配音虾

在数字化时代,视频内容已经成为了我们生活中不可或缺的一部分。无论是社交平台的短视频,还是企业宣传的微电影,一个引人入胜的配音往往能为其增添不少色彩。然而,很多人对如何为视频配音感到困惑,或者觉得这是一个技术…

北大最新综述精读:RAG在AIGC中的前世今生,覆盖300篇论文!

©作者|Haoyang 来源|神州问学 如果你对这篇文章感兴趣,而且你想要了解更多关于AI领域的实战技巧,可以关注「神州问学」公众号。在这里,你可以看到最新最热的AIGC领域的干货文章和前沿资讯。 引言: 人工智能生成内容&#x…

Sublime Text常用快捷键

Background Sublime Text 是一个轻量、简洁、高效、跨平台的编辑器。Sublime Text官方下载链接:https://www.sublimetext.com/download 快捷键的使用可以帮助我们更加高效地编写代码或者处理数据。 快捷键 按键功能CtrlL选择整行(重复按继续选择下行&a…

C语言sizeof操作符与strlen函数

1.sizeof与strlen的介绍 (1).sizeof 计算变量的内存空间大小。底层实际上是对变量类型的计算。是一个单目操作符,不是函数,后面的括号可以省略 (2).strlen 函数原型 strlen是一个函数,返回的size_t类型的数据,头文件为string.h计算字符串…

docker 运行异构镜像

概述 关于docker镜像在不同的cpu架构下运行报错的解决办法,作者踩坑验证,在此分享经验 某次工作遇到需要银行内部部署docker镜像,由于行内已经开始走信创的路线,使用鲲鹏系统,arm架构,结果就遇到了standa…

【gpt实践】同时让chatgpt和claude开发俄罗斯方块

最近chatgpt和claude都在使用,其实大部分日常使用场景表现都没有相差太多,想搞一个有趣的小实验,如果同时让chatgpt和claude开发俄罗斯方块谁会表现的更好呢,说干就干! prompt 我选择了用英文描述,毕竟英…

导入空管基础数据

1、首先将data.tar.gz解压到自定义目录中 注意:由于数据文件的压缩包比较大,解压过程可能会持续3~5分钟,请耐心等待。 [rootnode3 ~]# cd /opt/software/ [rootnode3 software]# tar -xzf data.tar.gz -C /opt/ 2、利用SQLyog或者其他数据库…

LeetCode:链表相交

题目描述 给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点,返回 null 。 示例 解题思想 将两个链表从尾部对齐,然后进行寻找。 此时我们就可以比较curA和curB是否相同&#xff0c…

Pytorch基础(21)-- torch.repeat_interleave()方法

分享一下自己目前在维护的Github项目,由于本人博士阶段接触了一个全新的研究方向-----使用机器学习、强化学习、深度学习等方法解决组合优化问题,维护这个项目的目的: (1)记录自己阅读过的paper,同时分享一…

G. Rudolf and Subway

解题思路 每条边的边权可选,由颜色决定同一颜色的线路可以直达颜色最多有种考虑将颜色视作链接点,进行分层图跑最短路最终结果除2最多建条边(直接存状态Map跑最短路被毙掉了) import java.io.*; import java.math.BigInteger; im…

【Python】新手入门学习:详细介绍接口分隔原则(ISP)及其作用、代码示例

【Python】新手入门学习:详细介绍接口分隔原则(ISP)及其作用、代码示例 🌈 个人主页:高斯小哥 🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、Py…

Postman请求API接口测试步骤和说明

Postman请求API接口测试步骤 本文测试的接口是国内数智客(www.shuzike.com)的API接口手机三要素验证,验证个人的姓名,身份证号码,手机号码是否一致。 1、设置接口的Headers参数。 Content-Type:applicati…

三防手机与普通手机的区别在哪里?

一、三防手机和普通手机主要的区别在于其防护性能,它们是针对不同环境和使用场景设计的。三防手机一般包括防水、防尘和防摔三个方面的特点,而普通手机则往往没有这些特点。 防水性能。三防手机的防水性能通常比普通手机更强大。三防手机可以在一定程度上…

【XR806开发板试用】简单移植coremark并测试实际跑分

前言 首先,拿到板子的时候,由于xr806它是个IOT的片子,所以自然而然必然,在预想里就会有很多大佬会把文章出发点考虑在wifi/bt,各种物联网/WEB应用上。那么怎么另辟蹊径回避这个热点又体现出XR806的特色呢,…

一款好用的AI工具——边界AICHAT(三)

目录 3.23、文档生成PPT演示3.24、AI文档翻译3.25、AI翻译3.26、论文模式3.27、文章批改3.28、文章纠正3.29、写作助手3.30、文言文翻译3.31、日报周报月报生成器3.32、OCR-DOC办公文档识别3.33、AI真人语音合成3.34、录音音频总结3.35、域方模型市场3.36、模型创建3.37、社区交…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的条形码二维码检测系统(深度学习+UI界面+训练数据集+Python代码)

摘要:在物流和制造业中,开发一套高效的条形码与二维码识别系统显得尤为关键。本博文深入探讨了如何利用深度学习技术打造出一套先进的条形码及二维码检测系统,并且提供了一套完整的实施方案。该系统搭载了性能卓越的YOLOv8算法,并…

[LeetCode][LCR 175]计算二叉树的深度

题目 计算二叉树的深度 某公司架构以二叉树形式记录,请返回该公司的层级数。 示例 1: 输入:root [1, 2, 2, 3, null, null, 5, 4, null, null, 4] 输出:4 解释: 上面示例中的二叉树的最大深度是 4,沿…

【BI-Dataease】dataease设计思路

参考:https://juejin.cn/post/7089310768671227940 1、BI可视化工具的关键问题是什么? (1)各种数据源的数据结构和类型如何统一? (2)各种图表的配置属性不一致,属性如何绑定到数据…

【C++庖丁解牛】实现string容器的增删查改 | string容器的基本接口使用

🍁你好,我是 RO-BERRY 📗 致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 🎄感谢你的陪伴与支持 ,故事既有了开头,就要画上一个完美的句号,让我们一起加油 目录 前言📖push_b…

关于stm32(CubeMX+HAL库)的掉电检测以及flash读写

1.掉电检测 CubeMX配置 只需使能PVD中断即可 但是使能了PVD中断后还需要自行配置一些PWR寄存器中的参数,我也通过HAL库进行编写 void PVD_config(void) {//配置PWRPWR_PVDTypeDef sConfigPVD; sConfigPVD.PVDLevel PWR_PVDLEVEL_7; …